Flow Analysis of Injection Molds

Peter Kennedy, Rong Zheng

Flow Analysis of Injection Molds

2013

381 Seiten

Format: PDF, Online Lesen

E-Book: €  149,99

E-Book kaufen

E-Book kaufen

ISBN: 9781569905227

 

Preface

10

Notation

22

I The Current Status of Simulation

32

1 Introduction

34

1.1 The Injection Molding Process

34

1.2 Molding Terminology

35

1.3 What is Simulation?

36

1.4 The Challenges for Simulation

37

1.4.1 Basic Physics of the Process

37

1.5 Why Simulate Injection Molding?

38

1.6 How Good is Simulation?

39

2 Stress and Strain in Fluid Mechanics

42

2.1 Stress in Fluids

42

2.1.1 The Stress Tensor

42

2.1.2 The Extra Stress Tensor

45

2.1.3 Rate of Strain Tensor

45

2.2 Newtonian and Non-Newtonian Fluids

46

2.3 The Generalized Newtonian Fluid

47

3 Material Properties of Polymers

50

3.1 Types of Polymers

50

3.2 Amorphous Polymers

51

3.3 Semi-Crystalline Polymers

51

3.4 Overview of Material Properties for Simulation

52

3.5 Viscosity

53

3.6 Modeling Viscosity

54

3.6.1 The Viscosity Function

54

3.6.2 The Power Law Model

54

3.6.3 The Carreau Model

54

3.6.4 The Cross Model

55

3.6.5 Incorporation of Temperature Effects

55

3.6.6 The Solidification Problem

56

3.7 Thermal Properties

57

3.7.1 Specific Heat Capacity

57

3.7.2 Thermal Conductivity

58

3.8 Thermodynamic Relationships

60

3.8.1 Expansivity and Compressibility

60

3.9 Pressure-Volume-Temperature (PVT) Data

62

3.10 Fiber Orientation

62

3.11 Shrinkage and Warpage

63

4 Governing Equations

66

4.1 Introduction

66

4.2 Mathematical Preliminaries

66

4.2.1 The Material Derivative

66

4.2.2 The Gauss Divergence Theorem

67

4.2.3 Reynolds Transport Theorem

68

4.2.4 Integration by Parts

68

4.3 Conservation of Mass

69

4.4 Conservation of Momentum

69

4.5 Conservation of Energy

71

4.5.1 Relating Specific Energy to Temperature

74

4.5.2 The Energy Equation in Terms of Temperature

76

4.6 Boundary Conditions

77

4.6.1 Pressure and Flow Rate Boundary Conditions

78

4.6.2 Temperature Boundary Conditions

79

4.6.3 Mold Deformation Boundary Conditions

79

4.6.3.1 Thin Cavities

79

4.6.3.2 Long Cores and Mold Inserts

80

4.7 Fiber-Filled Materials

80

4.7.1 Fiber Concentration

80

4.7.2 Jeffery's Equation

81

4.7.3 A Statistical Approach

82

4.7.4 Mechanical Properties

83

4.8 Shrinkage and Warpage

83

4.9 Runners

84

5 Approximations for Injection Molding

86

5.1 Introduction

86

5.2 Material Property Approximations

87

5.3 Filling, Packing, and Cooling Analysis

87

5.3.1 The Thermal Source Term in the Energy Equation

88

5.3.2 Viscosity Modeling

88

5.3.3 Specific Heat Capacity

89

5.3.4 Thermal Conductivity

89

5.3.4.1 Unfilled Amorphous

89

5.3.4.2 Unfilled Semi-Crystalline

90

5.3.4.3 Filled Materials

90

5.3.5 No-Flow or Transition Temperature

90

5.3.6 Pressure-Volume-Temperature (PVT) Data

92

5.3.7 Fiber Orientation, Shrinkage, and Warpage

93

5.3.7.1 Fiber Orientation Analysis

93

5.3.7.2 Shrinkage and Warpage Analysis

94

5.4 Summary of Material Assumptions

94

5.5 Governing Equations

95

5.6 The 2.5D Approximation

96

5.6.1 Governing Equations in Cartesian Coordinates

97

5.6.1.1 Conservation of Mass

97

5.6.1.2 Conservation of Momentum

99

5.6.1.3 Conservation of Energy

99

5.6.2 Estimation of Relevant Terms

100

5.6.3 Velocity in the z Direction

102

5.6.4 Integration of the Momentum Equations

103

5.6.5 Integration of the Continuity Equation

106

5.6.5.1 Summary of the 2.5D Approximation

108

5.7 Mold Cooling Analysis

109

5.8 Fiber Orientation

111

5.8.1 Orientation Tensors

111

5.8.2 Folgar-Tucker Equation

112

5.8.3 Closure Approximations

112

5.8.3.1 Linear Closure

113

5.8.3.2 Quadratic Closure

113

5.8.3.3 Hybrid Closure

113

5.8.3.4 Orthotropic Closure

114

5.8.3.5 The Interaction Coefficient

114

5.9 Shrinkage and Warpage

115

5.9.1 Shrinkage Prediction

116

5.9.1.1 Residual Strain Methods

116

5.9.1.2 Residual Stress Models

118

5.10 The 2.5D Approximation for Runners

122

5.10.1 Conservation of Mass for Runners

122

5.10.2 Conservation of Momentum for Runners

124

5.10.3 Conservation of Energy for Runners

124

5.10.4 Integration of the Momentum Equation for Runners

125

5.10.5 Integration of the Continuity Equation for Runners

127

6 Numerical Methods for Solution

130

6.1 Midplane Methods

130

6.1.1 Extraction of a Midplane from a 3D Model

131

6.1.2 Dual Domain Analysis for Flow

132

6.1.3 Dual Domain Structural Analysis

134

6.1.4 Warpage Analysis Using the Dual Domain FEM

137

6.2 3D Analysis

138

6.2.1 Finite Volume Methods

138

6.2.2 A Pseudo-3D Approach

139

6.3 Warpage and Shrinkage Analysis in 3D

139

6.4 3D Analysis of Runner Systems

140

II Improving Molding Simulation

142

7 Improved Fiber Orientation Modeling

144

7.1 Introduction

144

7.2 ARD Model

145

7.2.1 Evolution Equation

145

7.2.2 Direct Simulation

146

7.2.3 Calculation of CI

147

7.3 RSC Model

148

7.4 Suspension Rheology

149

7.5 Brownian Dynamics Simulation

151

8 Improved Mechanical Property Modeling

154

8.1 Introduction

154

8.2 Unidirectional Composites

155

8.2.1 Effective Stiffness

155

8.2.2 Effective Thermal Expansion Coefficients

157

8.2.3 Effects of Fiber Concentration and Aspect Ratio

157

8.2.3.1 Effect of Fiber Concentration

157

8.2.3.2 Effect of Fiber Aspect Ratio

158

8.3 Fiber Orientation Averaging

161

9 Long Fiber-Filled Materials

162

9.1 Fiber Orientation Evolution Model

162

9.2 Flow-Induced Fiber Migration Model

163

9.3 Fiber Length Attrition Model

165

9.4 Uniaxial Tensile Strength Model

166

9.5 Flexible Fiber Modeling

167

9.5.1 Direct Simulation Methods

167

9.5.2 Continuum Modeling

168

10 Crystallization

172

10.1 Quiescent Crystallization

172

10.1.1 The Kolmogoroff-Avrami-Evans Model

173

10.1.2 The Rate Equations of Schneider

174

10.1.3 Quiescent Nuclei Number Density

175

10.1.4 Growth Rate of Spherulites

176

10.1.5 Material Characterization

177

10.1.5.1 Half-Crystallization Time

177

10.1.5.2 Equilibrium Melting Temperature

177

10.1.5.3 Crystal Growth Rate

179

10.2 Flow-Induced Crystallization

180

10.2.1 Enhanced Nucleation

181

10.2.2 Critical Parameters

182

10.2.3 Shish-Kebab Structure

183

10.2.4 Material Characterization

183

11 Effects of Crystallization on Rheology and Thermal Properties

186

11.1 Effects of Crystallization on Rheology

186

11.1.1 Viscosity-Enhancement-Factor Model

186

11.1.2 Two-Phase Model

188

11.2 Effect of Crystallization on PVT

190

11.3 Effect of Crystallization on Specific Heat Capacity

191

11.4 Effect of Crystallization on Thermal Conductivity

192

11.4.1 Non-Fourier Thermal Conduction

192

11.4.2 Van den Brule's Law for Amorphous Polymers

193

11.4.3 Extending the Van den Brule Approach to Semi-Crystalline Polymers

193

11.5 Effect of Crystallization on Heat Transfer

195

11.5.1 Stefan's Solution

195

11.5.2 Numerical Solution with Crystallization Kinetics

196

11.6 Modification to the Hele-Shaw Equation

197

12 Colorant Effects

198

12.1 Introduction

198

12.2 Material Characterization

199

12.2.1 Morphology

199

12.2.2 Specific Heat

200

12.2.3 Half-Crystallization Time

200

12.2.3.1 Quiescent Crystallization

200

12.2.3.2 Flow-Induced Crystallization

200

12.3 Effect on Shrinkage

202

13 Prediction of Post-Molding Shrinkage and Warpage

206

13.1 Introduction

206

13.2 Governing Equations

207

13.3 Constitutive Equations

208

13.3.1 Viscoelastic Effect

208

13.3.2 Thermal Expansion Effect

209

14 Additional Issues of Injection-Molding Simulation

212

14.1 Weldlines

212

14.2 Core Shift

213

14.3 Non-Conventional Injection Molds

213

14.3.1 Overmolding

213

14.3.2 Gas-Assisted Injection Molding

214

14.3.3 Microcellular Injection Foaming Molding

217

14.3.4 Micro-Injection Molding

219

14.4 Viscoelastic Effects

222

14.4.1 Flow-Induced Residual Stress and Birefringence

222

14.4.2 Viscoelastic Instability

224

14.4.3 Viscoelastic Suspensions

225

14.5 Other Numerical Methods

227

14.5.1 Molecular Dynamics Simulation

227

14.5.2 Meshless Methods

228

15 Epilogue

232

Appendices

234

A History of Injection-Molding Simulation

236

A.1 Early Academic Work on Simulation

236

A.2 Early Commercial Simulation

237

A.3 Simulation in the Eighties

239

A.3.1 Academic Work in the Eighties

240

A.3.1.1 Mold Filling

240

A.3.1.2 Mold Cooling

242

A.3.1.3 Warpage Analysis

242

A.3.2 Commercial Simulation in the Eighties

243

A.3.2.1 Codes Developed by Large Industrials and Not for Sale

245

A.3.2.2 Codes Developed by Large Industrials for Sale in the Marketplace

245

A.3.2.3 Companies Devoted to Developing and Selling Simulation Codes

246

A.4 Simulation in the Nineties

247

A.4.1 Academic Work in the Nineties

248

A.4.2 Commercial Developments in the Nineties

249

A.4.2.1 SDRC

249

A.4.2.2 Moldflow

250

A.4.2.3 AC Technology/C-MOLD

251

A.4.2.4 Simcon

251

A.4.2.5 Sigma Engineering

251

A.4.2.6 Timon

252

A.4.2.7 Transvalor

252

A.4.2.8 CoreTech Systems

252

A.5 Simulation Science Since 2000

252

A.5.1 Commercial Developments Since 2000

254

A.5.1.1 Moldflow

255

A.5.1.2 Timon

256

A.5.1.3 CoreTech Systems

256

A.5.1.4 Autodesk

256

A.5.2 Note for Students

256

B Tensor Notation

258

B.1 Index Notation

258

B.2 Einstein Summation Convention

259

B.3 Kronecker Delta

260

B.4 Alternating Tensor

260

B.5 Product Operations of Two Tensors

261

B.6 Transpose Operation

261

B.7 Transformation of Principal Axes

262

B.8 Gradient of a Field

264

B.9 Unit Vector p and Operator /p

264

B.10 Identities

265

C Derivation of Fiber Evolution Equations

266

C.1 The Langevin Equation

266

C.2 Probability Density Function and Orientation Tensors

268

C.3 Equations of Change for the Orientation Tensors

269

C.3.1 Isotropic Rotary Diffusion Model (Folgar-Tucker Model)

270

C.3.2 Anisotropic Rotary Diffusion Model

272

D Dimensional Analysis of Governing Equations

274

D.1 Conservation of Mass

275

D.2 Conservation of Momentum

276

D.3 The Energy Equation

279

D.4 Summary

281

D.4.1 Conservation of Mass

281

D.4.2 Conservation of Momentum

281

D.4.3 Energy Equation

282

E The Finite Difference Method

284

E.1 Introduction to the Finite Difference Method

284

E.1.1 A Simple Example

286

E.2 Application to Temperature Calculation

288

E.2.1 Explicit Methods

288

E.2.1.1 Stability Criteria for Explicit Methods

289

E.2.2 Implicit Methods

289

F The Finite Element Method

292

F.1 Basic Terminology

292

F.2 The Finite Element Approach

293

F.2.1 Geometric Modeling of the Solution Domain

293

F.2.2 Meshing

294

F.2.3 Derivation of Element Equations

294

F.2.4 Assembly of Element Equations

294

F.2.5 Application of Boundary Conditions

295

F.2.6 Solution of the System Equations

295

F.2.7 Display of Results

295

F.3 The Nature of a Finite Element Solution

296

F.4 Shape Functions

298

F.5 Approximating Nodal Values

298

F.5.1 Weighted Residual Methods

299

F.6 Constraint Equations

299

F.6.1 Special Case 1: Two Unknowns Equal

302

F.6.2 Special Case 2: One Known Constraint

303

F.7 A One-Dimensional Problem Solved Using the FEM

304

F.7.1 Meshing

304

F.7.2 Derivation of Element Equations

305

F.7.3 Assembly

309

F.7.4 Application of Boundary Conditions

310

F.7.5 Solution of System Equations

312

G Numerical Methods for the 2.5D Approximation

314

G.1 Overview of Solution Process

314

G.1.1 Numerical Methods

315

G.2 Finite Element Formulation for the Pressure Field

316

G.2.1 Interpolation Functions

316

G.2.2 Area Coordinates

317

G.3 Finite Element Derivation

318

G.3.1 Assembly of Element Equations and Solution

326

G.4 Solution of the Energy Equation

327

G.4.1 Finite Difference Discretization

327

G.4.2 Solution of the Conduction Problem

328

G.4.3 Explicit Method

328

G.5 Flow Front Advancement

329

G.6 Runners

329

H Three-Dimensional FEM for Mold Filling Analysis

334

H.1 Governing Equations

334

H.2 Weak Formulations

335

H.3 Finite Element Matrix Formulations

336

H.4 Solution Procedures

340

H.5 Flow-Front Advancement

341

H.6 Numerical Solution For Temperature Field

342

I Level Set Method

344

J Full Form of Mori-Tanaka Model

348

J.1 Eshelby Tensor Components

348

J.1.1 Material with Isotropic Matrix and Inclusions

348

J.1.2 General Anisotropic Materials

349

J.2 Expanded Mori-Tanaka Equation

350

J.2.1 Contracted Notation for Stiffness Tensor and Compliance Tensor

350

J.2.2 Inverse of a Matrix

350

J.2.3 Expanded Expression of the Mori-Tanaka Equation

351

Bibliography

352

Index

352

 

© 2009-2024 ciando GmbH