Synthetic Polymer-Polymer Composites

Debes Bhattacharyya, Stoyko Fakirov

Synthetic Polymer-Polymer Composites

2012

829 Seiten

Format: PDF, Online Lesen

E-Book: €  279,99

E-Book kaufen

E-Book kaufen

ISBN: 9781569905258

 

Preface

6

Contents

8

Contributors

22

PART I – INTRODUCTION

32

Chapter 1 – Manufacturing and Processing of Polymer Composites

34

1.1. Introduction

34

1.2. Autoclave-processing

36

1.2.1. Introduction

36

1.2.2. Equipment

36

1.2.3. Laminate assembly

36

1.2.4. Process description

37

1.2.5. Further developments

38

1.3. Pultrusion

38

1.3.1. Introduction

38

1.3.2. Equipment

38

1.3.3. Process description

39

1.4. Filament winding and placement techniques

41

1.4.1. Filament winding

41

1.4.2. Tape-laying

46

1.5. Liquid composite molding

49

1.5.1. Introduction

49

1.5.2. LCM processes with single sided tools

50

1.5.3. Double sided tool LCM processes

54

1.6. Thermoforming of semifinished thermoplastic composite sheets

57

1.6.1. Double belt press forming

57

1.6.2. Continuous compression molding

57

1.6.3. Roll forming

58

1.7. Combined forming processes

60

1.7.1. Thermoforming and injection/compression moldi

60

1.7.2. Pultrusion/impregnation and roll formin

60

1.8. Post processing of composites

61

1.8.1. Welding of thermoplastics

62

1.9. Conclusions and outlook

63

References

63

Chapter 2 – Melting of Polymer-Polymer Compositesby Particulate Heating Promotersand Electromagnetic Radiation

70

2.1. Introduction

70

2.2. State of the art

71

2.2.1. Induction heating

72

2.2.2. Microwave heating

74

2.3. Selective melting using particulate fillers

79

2.3.1. Selective melting by induction

80

2.3.1.1. Effect of different susceptor materials

81

2.3.1.2. Effect of frequency variation

83

2.3.1.3. Effect of susceptor size

83

2.3.1.4. Application of induction heating for polymer-polymer materials

84

2.3.1.5. Simulation of particulate inductive heating

84

2.4. Selective melting by microwave radiation

88

2.4.1. Effect of different susceptor materials

88

2.4.2. Influence of dispersion quality

91

2.5. Concepts for an industrial application

92

2.6. Conclusions and outlook

93

Acknowledgements

94

References

94

Further Reading

95

Chapter 3 – Inter-Particle Distance and TougheningMechanisms in Particulate ThermosettingComposites

96

3.1. Introduction

96

3.2. Various conditions for fracture surface morphology

97

3.3. Inter-particle/void distance and toughening mecha

98

3.3.1. Theoretical inter-particle distance

99

3.3.2. Method for inter-particle distance measurement

100

3.3.3. Statistical properties of inter-particle distance

105

3.3.3.1. 3D particle generation

105

3.3.3.2. Results and discussion

108

3.3.4. Experimental inter-void distance and toughness

112

3.3.4.1. Method for void generation in matrix

112

3.3.4.2. Mechanical testing

113

3.3.4.3. Microscopy

113

3.3.4.4. Experimental results and discussion

114

3.4. Toughening mechanisms in the presence of compressive stress around particles/voids

120

3.4.1. Necessary conditions for cavitation

120

3.4.2. Graphical understanding of compressive stress around particles

121

3.4.3. Creating compressive stress around modifier particles as a toughening method

122

3.4.4. Production of mechanical testing specimens

123

3.4.5. Mechanical properties of toughened epoxies

124

3.4.6. Fracture surface morphology examination

124

3.4.7. Stress intensity factor influenced by compressive residual stress

128

3.4.8. Mohr circle analysis for fracture surface morphology

131

3.4.9. Interaction of toughening mechanisms

137

3.5. Conclusions

142

References

143

PART II – POLYMER-POLYMER COMPOSITES WITH PREMADE FIBROUS REINFORCEMENT

148

Chapter 4 – Fracture Behavior of Short Carbon Fiber Reinforced Polymer Composites

150

4.1. Introduction

150

4.2. Deformation of SCF-reinforced composites

151

4.2.1. Carbon fiber-polymer matrix interface

151

4.2.2. Fiber length

155

4.2.3. Matrix microstructure

157

4.2.4. Fiber orientation

159

4.3. Fiber hybridization

161

4.4. Fracture toughness of SCF-reinforced composites

163

4.5. Fatigue failure

169

4.6. Conclusions and outlook

172

References

172

Chapter 5 – Polymer-Carbon Nanotube Composites: Melt Processing, Properties and Applications

176

5.1. Introduction

176

5.2. Microscopy based characterization of dispersion, distribution, and alignment of nanotubes in polymer matrices

179

5.2.1. Light microscopy

179

5.2.2. Transmission electron microscopy

180

5.3. Dispersion of nanotubes by melt mixing

181

5.3.1. Theoretical considerations

181

5.3.2. Small-scale batch compounding

184

5.3.3. Twin-screw extrusion

193

5.4. Morphology development during shaping

195

5.4.1. Compression molding

196

5.4.2. Injection molding

198

5.4.3. Fiber spinning

200

5.5. Properties and applications

201

5.5.1. Mechanical reinforcement

201

5.5.2. Electrical conductivity

204

5.5.3. Resistivity changes due to external stimuli

210

5.5.4. Fire retardancy

212

5.6. Conclusions and outlook

213

Acknowledgments

214

Appendix

214

References

218

Chapter 6 – Manufacturing and Electrical Properties of Carbon Nanotube Reinforced Polymer Composites

224

6.1. Introduction

224

6.2. Functionalization of carbon nanotubes

225

6.3. Manufacturing carbon nanotube/polymer composites

227

6.3.1. Solution mixing

227

6.3.2. In situ polymerization

230

6.3.3. Melt mixing

231

6.3.5. Aligned carbon nanotube/polymer composites

233

6.4. Electrical properties of polymer/CNT composites

235

6.4.1. Percolation threshold

235

6.4.2. CNT/thermoplastic nanocomposites

236

6.4.2.1. Glassy thermoplastics

236

6.4.2.2. Semicrystalline thermoplastics

239

6.4.3. CNT/elastomer nanocomposites

246

6.4.4. Aligned CNT/polymer composites

247

6.5. Conclusion and outlook

250

References

250

Chapter 7 – Fabrication, Morphologies and Mechanical Properties of Carbon Nanotube Based Polymer Nanocomposites

256

7.1. Introduction

256

7.2. Carbon nanotubes

257

7.2.1. What is carbon nanotube?

257

7.2.2. Mechanical properties of carbon nanotubes

257

7.2.3. Functionalization and alignment of carbon nanotubes

258

7.3. Fabrication of polymer/carbon nanotube composites

260

7.3.1. Melt compounding

260

7.3.2. Solution blending

261

7.3.3. In situ polymerization

261

7.3.4. Other fabrication methods

261

7.4. Mechanical properties of polymer/carbon nanotube composites

262

7.4.1. Simulation results

262

7.4.2. Experimental results

262

7.5. Conclusions and outlook

272

Acknowledgements

274

References

274

Chapter 8 – Manufacturing and Properties of Aramid Reinforced Composites

282

8.1. Introduction

282

8.2. Aramid types and manufacturers

283

8.3. Synthesis of aramids

284

8.4. Commercial forms of aramids and their physical properties

286

8.5. Structure and properties of p-aramid fibers

289

8.6. Properties of p-aramid fiber reinforced polymer composites

294

8.6.1. p-Aramid FRPs with thermoset matrices

294

8.6.1.1. Unsaturated polyester and vinyl ester matrices

294

8.6.1.2. Epoxy resin matrices

295

8.6.1.3. Other thermoset matrices for p-aramid composites

300

8.6.1.4. Manufacturing of p-aramid composites with thermoset matrices

301

8.6.2. p-Aramid FRPs with thermoplastic matrices

302

8.7. Concluding remarks

305

Acknowledgements

306

References

306

Chapter 9 – Molecular Liquid Crystalline Polymers Reinforced Polymer Composites: The Concept of “Hairy Rods”

312

9.1. Introduction

312

9.1.1. Rapid preparation technologies to exclude phase separation

313

9.1.2. Advanced synthesis to obtain a homogeneous blend

314

9.1.3. Homogeneous mixtures by increased enthalpy: strong dipole-dipole interaction, hydrogen bonding and ionic interactions

315

9.1.4. Advanced molecular structure, consisting of rigid and flexible segments

315

9.1.5. Advanced molecule structure: rigid star molecules or multipodes

317

9.2. Molecular composites from “hairy-rod” molecules prepared via the Langmuir-Blodgett technique

317

9.2.1. Synthesis of “hairy-rod” molecules

318

9.2.2. Preparation of constructs of internal nanoscale architecture using the Langmuir-Blodgett technique

319

9.2.3. Some properties of multilayers of hairy-rod macromolecules

321

9.2.4. Construction of nanoscaled devices and functional materials

323

9.3. Conclusions and outlook

325

References

325

Chapter 10 – Electrospun Composite Nanofibers and Polymer Composites

332

10.1. Introduction

332

10.2. Electrospinning of nanofibers

334

10.2.1. Principles of electrospinning

336

10.2.2. Process optimization for gaining ultrafine nanofibers

342

10.3. Industrialization attempts for producing electrospun materials in a high volume

343

10.3.1. Modified spinnerets for higher outputs

343

10.3.2. Modified collector systems for producing special electrospun structures

347

10.4. Composite nanofibers

352

10.4.1. Testing and modeling the mechanical behavior of nanofibers for composite applications

352

10.4.2. Composite nanofibers incorporated with smaller nanoparticles

355

10.4.3. Core-shell nanofibers prepared by coaxial electrospinning

358

10.5. Synthetic polymer-polymer composites containing or based on electrospun nanofibers

361

10.5.1. Nanofibers as interlaminar reinforcement of composites

361

10.5.2. Electrospun nanofibers and their modifications as potential reinforcement of polymer-polymer composites

365

10.6. Conclusions and outlook

372

Acknowledgements

372

References

373

PART III – In situ NANO- AND MICROFIBRILLARPOLYMER-POLYMER COMPOSITES

382

Chapter 11 – The Concept of Micro- or NanofibrilsReinforced Polymer-Polymer Composites

384

11.1. Introduction: a brief historical overview

384

11.2. Preparation of MFC

388

11.2.1. Miscibility and compatibility in polymer blends

388

11.3. Mechanism of microfibril formation in polymer blends and effect of the compatibilizers on this process

394

11.4. Microfibrillar composites from blends of condensation polymers

398

11.4.1. Peculiarities of MFCs prepared from blends of condensation polymers

399

11.4.2. Mechanical properties of MFCs prepared from blends of condensation polymers

400

11.5. Microfibrillar composites from blends of condensation polymers with polyolefins

402

11.6. Nanofibril reinforced composites from polymer blends

407

11.6.1. Peculiarities of polymer nanocomposites

407

11.6.2. Manufacturing of nanofibrillar polymer-polymer composites

408

11.6.4. Mechanical properties of NFCs

410

11.7. Effect of fibril orientation on the mechanical performance of MFCs and NFCs

412

11.8. Opportunities arising from the MFC concept

418

11.8.1. Commercial potential of the MFC concept in the automotive industry

419

11.8.2. Commercial potential of the MFC concept for commodity purposes

419

11.8.3. Potential of the MFC concept for biomedical applications

421

11.9. Conclusions and outlook

424

Acknowledgments

425

References

425

Chapter 12 – Microfibril Reinforced Polymer-Polymer Composites via Hot Stretching: Preparation, Structure and Properties

432

12.1. Introduction

432

12.2. Fabrication of microfibril reinforced polymer-polymer composites

433

12.2.1. Rheological fundamental for deformation of dispersed phase

433

12.2.2. Preparation of microfibril reinforced polymer-polymer composites

434

12.3. Three primary factors affecting in situ fibrillation

437

12.3.1. Composition

438

12.3.2. Hot stretch ratio

440

12.3.3. Viscosity ratio

441

12.4. Mechanical properties of microfibril reinforced polymer-polymer composites

442

12.5. Rheological properties of microfibril reinforced polymer-polymer composites

446

12.5.1. Rheology-composition relationship of microfibril reinforced polymer-polymer composites

446

12.5.2. Rheology-morphology relationship of microfibril reinforced polymer-polymer composites

449

12.6. Crystallization property and crystal structure of microfibril reinforced polymer-polymer composites

450

12.6.1. Crystallization kinetics of microfibril reinforced polymer-polymer composites

450

12.6.2. Crystal structures of microfibril reinforced polymer-polymer composites

452

12.6.3. Crystalline morphology and aggregates of microfibril reinforced polymer-polymer composites

454

12.7. Application of microfibril reinforced polymer-polymer composites concept

457

12.7.1. Recycling of thermoplastic blends

457

12.7.2. Suppression of skin-core structure in injection molded polymer parts via in situ microfibrils

461

12.8. Conclusions

463

Acknowledgements

464

References

464

Chapter 13 – Microfibril Reinforced Polymer-Polymer Composite via Hot Stretching: Electrically Conductive Functionalization

468

13.1. Introduction

468

13.2. Isotropically conductive polymer composite

469

13.2.1. Isotropic i-CB/PET/PE

469

13.2.1.1. Preparation and typical morphology

469

13.2.1.2. The percolation behavior

471

13.2.1.3. The resistivity-temperature behavior

475

13.2.2. Isotropic o-CB/PET/PE

478

13.2.2.1. Preparation and typical morphology

478

13.2.2.2. The percolation behavior

479

13.2.2.3. The resistivity-temperature behavior during cooling

481

13.3. Anisotropically conductive polymer composite

482

13.3.1. Preparation and typical morphology

482

13.3.2. The percolation behavior

483

13.3.3. The resistivity-temperature behavior

485

13.4. Conclusions

491

Acknowledgments

491

References

492

Chapter 14 – Preparation, Mechanical Properties and Structural Characterization of Microfibrillar Composites Based on Polyethylene/Polyamide Blends

496

14.1. Introduction

496

14.2. Preparation and morphology of microfibrillar composites

499

14.3. Mechanical characterization of PE/PA microfibrillar composites

503

14.3.1. Tensile tests with HDPE/PA6 systems

503

14.3.2. The flexural tests

510

14.3.3. The impact tests

513

14.3.4. A comparison between the mechanical properties of PA6 and PA12 MFCs

515

14.4. Structure-properties relation in microfibrillar composites

517

14.4.1. Microscopy studies of HDPE/PA6 and HDPE/PA12 systems

521

14.4.2. Synchrotron X-ray studies of HDPE/PA6 and HDPE/PA12 MFC

530

14.4.2.1. Small-angle X-ray scattering

531

14.4.2.2. Wide-angle X-ray scattering

538

14.4.2.3. Evaluation of the TCL thickness

546

14.5. Conclusions and outlook

548

Acknowledgements

549

References

550

Chapter 15 – Microfibrils Reinforced Composites Based on PP and PET: Effect of Draw Ratioon Morphology, Static and Dynamic Mechanical Properties, Crystallization and Rheology

556

15.1. Introduction

556

15.2. Experimental details: materials and procedures

559

15.3. Sample characterization

563

15.3.1. Morphology development

563

15.3.2. Static mechanical properties

568

15.3.2.1. Tensile properties

568

15.3.2.2. Flexural and impact properties

570

15.3.3. Dynamic mechanical analysis

570

15.3.3.1. Storage modulus

571

15.3.3.2. Loss modulus

573

15.3.3.3. Mechanical loss factor (tan d)

574

15.3.4. Crystallization

576

15.3.4.1. Non-isothermal crystallization behavior of MFBs and MFCs

576

15.3.4.2. Crystallization time

578

15.3.4.3. X-ray diffraction

579

15.3.5. Dynamic rheology

582

15.3.5.1. Storage and loss shear modulus

582

15.3.5.2. Complex viscosity and tan d

585

15.4. Conclusions and outlook

586

References

588

Chapter 16 – Structural and Mechanical Characterization of the Reinforcement and Precursors of Micro- and Nanofibrils Reinforced Polymer-Polymer Composites

594

16.1. Introduction

594

16.1.1. Monitoring structure variation in polymer-polymer composites

594

16.1.2. Progress in X-ray scattering

595

16.1.3. Progress in methods for the analysis of scattering data

596

16.2. Practice of experiment and data analysis

596

16.3. WAXD fiber mapping

597

16.3.1. Motivation and method design

597

16.3.2. Actions required by the user

597

16.3.3. Automated mapping

599

16.3.4. Application

599

16.4. X-Ray scattering fiber tomography

600

16.4.1. Motivation

600

16.4.2. Introduction of the method

602

16.4.3. Applications

605

16.5. SAXS monitoring of mechanical tests

607

16.5.1. Motivation and method development

607

16.6. Combining time resolution and spatial resolution

613

16.7. Conclusions and outlook

614

Acknowledgment

615

References

615

Chapter 17 – Application Opportunities of the Microfibril Reinforced Composite Concept

620

17.1. Introduction

620

17.2. Barrier properties of polymer blends and composites

623

17.2.1. Theoretical aspects of permeability

624

17.2.2. How crystallinity affects permeability

625

17.3. MFC application opportunities as packaging with improved barrier properties

626

17.4. MFC permeation experiments

627

17.4.1. Experimental setup

627

17.4.2. Preliminary permeation experiments

627

17.4.2.1. Effect of PET content

628

17.4.2.2. Effect of draw ratio

629

17.4.3. MFC permeability investigation

629

17.4.3.1. Manufacturing parameters

629

17.4.3.2. Film morphology

630

17.4.3.3. Permeability Test Results

632

17.4.3.4. Analysis using the Taguchi method

633

17.4.3.5. Sample crystallinity

633

17.4.3.6. The role of aging

634

17.4.4. Mechanical properties

635

17.5. MFC permeability modeling

635

17.6. Application opportunities in vehicle manufacturing

640

17.7. Applications for biomedical purposes

642

17.8. Other applications of the MFC concept

651

17.8.1. Recycling of blended plastic waste streams

651

17.8.2. Electroconductive materials

652

17.9. Conclusions and outlook

653

Acknowledgements

654

References

654

Chapter 18 – Polylactide Based Bio-Resorbable Bone Nails: Improvements of Strength and Stiffness by Microfibrillar Reinforcement

658

18.1. Introduction

658

18.2. Materials, preparation, characterization

660

18.2.1. Materials used

660

18.2.2. Specimen characterization

661

18.2.3. MFC preparation

661

18.3. Morphology and mechanical properties

666

18.3.1. Morphology of the samples

666

18.3.2. Mechanical properties

668

18.4. Conclusions

671

Acknowledgements

671

References

671

PART IV – SINGLE POLYMER COMPOSITES

672

Chapter 19 – Micro- and Nanofibrillar Single Polymer Composites

674

19.1. Introduction

674

19.2. Producing polymeric micro- and nanofibers

675

19.2.1. Melt blowing

676

19.2.2. Electrospinning

677

19.2.3. Bicomponent melt spinning

678

19.3. Mechanical properties of polymer micro- and nanofibers

680

19.3.1. Characterization and modeling of the mechanical properties

680

19.4. Manufacturing routes for micro- and nano-SPC materials

681

19.4.1. In situ creation of polymer micro- and nanofibrils

682

19.4.2. Reactive process in situ copolymerization method

684

19.4.3. Hot-compaction method

686

19.4.4. Film stacking method

687

19.4.5. Resin infusion method

687

19.4.6. Overheating method

687

19.4.7. Co-extrusion method

687

19.5. Commercially available SPC materials

688

19.5.1. Curv

688

19.5.2. PURE

690

19.5.3. PARA-LITE PP

690

19.5.4. Armordon

690

19.5.5. Kaypla

691

19.5.6. Comfil SPCs and injection moldable SPC pellets (ESPRI project)

691

19.6. Case studies

692

19.6.1. SPCs by in situ creation of nanofibrils and hot compaction

692

19.6.2. SPCs by melt spinning and in situ copolymerization

696

19.7. Summary and outlook

698

References

698

Chapter 20 – Polymorphism- and Stereoregularity-Based Single Polymer Composites

704

20.1. Introduction

704

20.1.1. Definitions

705

20.1.2. Preparation of single polymer composites

706

20.2. Stereoregularity, crystallization and polymorphism in polymers

708

20.2.1. Stereoregularity of macromolecules

709

20.2.2. Crystallization of polymers

710

20.2.3. Polymorphism in polymers

711

20.3. Amorphous matrix with amorphous reinforcement

713

20.3.1. Single polymer microcomposites

713

20.3.2. Single polymer nanocomposites

714

20.4. Amorphous matrix with semicrystalline reinforcement

714

20.4.1. Single polymer microcomposites

715

20.4.2. Single polymer nanocomposites

715

20.5. Semicrystalline matrix with semicrystalline reinforcement

716

20.5.1. Single polymer microcomposites

716

20.5.2. Single polymer nanocomposites

722

20.6. Applications of SPCs

725

20.7. Outlook and future trends

725

Acknowledgements

726

References

726

Chapter 21 – Layered Polymer-Polymer Composite with Nanocomposite as Reinforcement

730

21.1. Introduction

730

21.2. Graft polymerization onto nanoparticles

731

21.3. Oriented PP reinforcements filled with nano-SiO2

733

21.4. Manufacturing and characterization of PP homopolymer-PP copolymer composite with nanocomposite as reinforcement

742

21.5. Conclusions

746

Acknowledgement

747

References

747

Chapter 22 – Manufacturing of Self-Reinforced All-PPComposites

750

22.1. Introduction

750

22.2. Self-reinforced thermoplastic fiber composite materials

750

22.3. Manufacturing concept and composite structure

752

22.3.1. Primary shaping

752

22.3.2. Semifinished product manufacturing

753

22.3.3. Compaction and molding

754

22.3.4. Composite structure

754

22.4. The processing technology of hot-compaction

755

22.5. Molding strategies

757

22.4.1. Preheating

755

22.4.2. Compaction

755

22.4.3. Cooling

757

22.5. Molding strategies

757

22.5.1. Thermoforming hot-compacted semifinished plate products

758

22.5.2. Compression molding in combination with the hot-compaction of semifinished textile products

759

22.6. Property spectrum of SR-PP composites

760

22.7. Fields of application for self-reinforced organic sheets made of PP

763

22.8. Conclusions and outlook

765

Acknowledgement

765

References

765

Chapter 23 – Single Polymer Composites via Shear Controlled Orientation Injection Molding (SCORIM) or Oscillating Packing Injection Molding (OPIM) Techniques

770

23.1. Introduction

770

23.2. Self-reinforced polyethylene by SCORIM techniques

774

23.3. Self-reinforced polypropylene by SCORIM techniques

786

23.4. Other polymer composites reinforced by SCORIM techniques

795

23.5. Conclusions and outlook

796

References

796

List of Acknowledgements

800

Author Index

812

Subject Index

816

 

© 2009-2024 ciando GmbH