Polymer Science - A Textbook for Engineers and Technologists

Sebastião V. Canevarolo Jr.

Polymer Science

A Textbook for Engineers and Technologists

2019

400 Seiten

Format: PDF, Online Lesen

E-Book: €  99,99

E-Book kaufen

E-Book kaufen

ISBN: 9781569907269

 

Contents

14

Preface

8

About the Author

10

Foreword

12

1 General Introduction

26

1.1 History

26

1.2 Polymer Concept

30

1.2.1 Reactive Double Bonds

31

1.2.2 Reactive Functional Groups

32

1.3 Terminology

32

1.4 Sources of Raw Materials

33

1.4.1 Natural Products

33

1.4.2 Mineral Coal

34

1.4.3 Petroleum

35

1.5 Problems

36

2 Polymer Molecular Structure

38

2.1 Molecular Forces in Polymers

38

2.1.1 Primary or Intramolecular Bonds

38

2.1.1.1 Ionic or Electrovalent Bonds

38

2.1.1.2 Coordinate Bonds

39

2.1.1.3 Metallic Bonds

39

2.1.1.4 Covalent Bonds

39

2.1.2 Secondary or Intermolecular Bonds

41

2.1.2.1 Van der Waals Forces

42

2.1.2.2 Hydrogen Bonds

44

2.1.3 Summary

46

2.2 Monomer Functionality

46

2.3 Types of Chains

48

2.3.1 Linear Chain

48

2.3.2 Branched Chain

49

2.3.2.1 Random Chain Architecture

49

2.3.2.2 Star or Radial Chain Architecture

49

2.3.2.3 Comb Chain Architecture

50

2.3.3 Cross-linked Chain

50

2.4 Copolymer

52

2.4.1 Random Copolymer

52

2.4.2 Alternating Copolymer

52

2.4.3 Block Copolymer

53

2.4.4 Graft Copolymer

53

2.5 Classification of Polymers

54

2.5.1 Chemical Structure

54

2.5.1.1 Carbon Chain Polymers

55

2.5.1.2 Heterogeneous Chain Polymers

59

2.5.2 Method of Preparation

62

2.5.2.1 Addition Polymers

62

2.5.2.2 Condensation Polymers

62

2.5.3 Mechanical Behavior

63

2.5.3.1 Plastics

63

2.5.3.2 Elastomers

64

2.5.3.3 Fibers

65

2.5.4 Mechanical Performance

65

2.5.5 Commodity Thermoplastics

65

2.5.6 Special Thermoplastics

65

2.5.7 Engineering Thermoplastics

65

2.5.8 Special Engineering Thermoplastics

66

2.6 Configuration of Polymer Chains

66

2.6.1 Polymer Chaining

66

2.6.1.1 Head-to-Tail Chaining

67

2.6.1.2 Head-to-Head (or Tail-to-Tail) Chaining

67

2.6.1.3 Mixed Chaining

67

2.6.2 Isomerism in Dienes

68

2.6.3 Tacticity

71

2.6.3.1 Isotactic Polymer

71

2.6.3.2 Syndiotactic Polymer

71

2.6.3.3 Atactic Polymer

72

2.7 Conformation of Polymer Chains

73

2.7.1 Random Coil

74

2.7.2 Planar Zig-Zag

75

2.7.3 Helical

76

2.7.4 Mnemonic Rule

77

2.8 Problems

78

3 Polymers in Solution

80

3.1 Technological Importance

80

3.2 Conformation of the Polymer Chain in Solution

80

3.2.1 Free Joined Chain Model

81

3.2.2 Free Tetrahedral Rotation Chain Model

82

3.2.3 Restricted Movement Chain Model

83

3.2.4 Characteristic Ratio

84

3.2.5 Expansion Factor

86

3.3 Theta Condition

86

3.4 The Excluded Volume

90

3.5 Polymer Solubility

93

3.5.1 Basic (Empirical) Rules of Polymer Solubility

94

3.5.2 Effect of Polymer Chain Type on Solubility

94

3.5.3 Cohesive Energy Density in Polymers, CED

95

3.5.4 Hildebrand Solubility Parameter

96

3.5.5 Generalized or Hansen Solubility Parameter

97

3.5.6 Methods for Determining the Solubility Parameter

105

3.5.6.1 Molar Attraction Constant, G

105

3.5.6.2 Solvent Swelling

106

3.5.7 Polymer Fractionation

106

3.5.7.1 Addition of a Non-Solvent

107

3.5.7.2 Evaporation of the Solvent

107

3.5.7.3 Temperature Reduction

107

3.6 Problems

113

4 Polymer Solid-State Morphology

114

4.1 Introduction

114

4.2 Morphological Models of Polymer Crystallization

115

4.2.1 Fringed Micelle Model

115

4.2.2 Folded Chains, Lamellae, or Single Crystal Model

116

4.3 Molecular Chain Packing

118

4.4 Crystalline Structures Derived from the Crystallization Process

120

4.4.1 Spherulitic Crystallization Structure

120

4.4.2 Shish-Kebab Crystallization Structure

123

4.5 Interlamellar Links

124

4.6 Unit Cells of Some Semi-Crystalline Polymers

125

4.6.1 Polyethylene (PE)

125

4.6.2 Polypropylene (PP)

128

4.6.3 Polyhexamethylene Adipamide (Nylon 6,6)

129

4.6.4 Polyethylene Terephthalate (PET)

130

4.7 Crystallinity Degree

131

4.7.1 Determination of the Degree of Crystallinity from the Specific Volume

132

4.7.2 Determination of the Degree of Crystallinity from the Density

133

4.7.3 Determination of the Degree of Crystallinity from the Melt Enthalpy

136

4.7.4 Determination of the Degree of Crystallinity from Specific Heat

138

4.8 Factors That Alter the Degree of Crystallinity

139

4.8.1 Polymer Structural Factors

139

4.8.1.1 Chain Linearity

139

4.8.1.2 Tacticity

139

4.8.1.3 Side Chain Group

139

4.8.1.4 Configuration around Double Bonds

140

4.8.1.5 Polarity

140

4.8.1.6 Stiffness or Flexibility of the Main Chain

141

4.8.1.7 Copolymerization

141

4.8.2 External Factors

141

4.8.2.1 Impurities and Additives

141

4.8.2.2 Nucleating and Clarifying Agents

142

4.8.2.3 Polymeric Second Phase

142

4.8.3 Processing Conditions

142

4.8.3.1 Shear Rate

142

4.8.3.2 Cooling Rate

143

4.9 Problems

143

5 Polymer Synthesis

144

5.1 Introduction

144

5.2 Classification of the Polymerization Processes

144

5.2.1 Number of Monomers

144

5.2.2 Type of Chemical Reaction

145

5.2.3 Polymerization Kinetics

145

5.2.4 Type of Physical Arrangement Methods

145

5.3 Step Polymerization

146

5.3.1 Characteristics of Step Polymerization

146

5.3.2 Some Factors Affecting Step Polymerization

147

5.3.2.1 Reaction Time and Temperature

147

5.3.2.2 Catalyst

147

5.3.2.3 Non-Equimolar Addition of the Reagents

147

5.3.2.4 Functionality of the Third Reagent

148

5.3.2.5 Ways of Stopping Step Polymerization

148

5.4 Chain Polymerization

149

5.4.1 Free-Radical Chain Polymerization

150

5.4.1.1 Initiation

150

5.4.1.2 Propagation

151

5.4.1.3 Termination

151

5.4.2 Inhibitors and Retarders

155

5.5 Ionic Polymerization

156

5.5.1 Cationic Polymerization

156

5.5.1.1 Initiation

156

5.5.1.2 Propagation

156

5.5.1.3 Termination

157

5.5.2 Anionic Polymerization

157

5.5.2.1 Initiation

158

5.5.2.2 Propagation

158

5.5.2.3 Termination

158

5.6 Ring-Opening Polymerization

159

5.7 Copolymerization

160

5.8 Methods of Polymerization According to the Physical Arrangement

161

5.8.1 Bulk Polymerization

161

5.8.2 Solution Polymerization

162

5.8.3 Suspension Polymerization

162

5.8.4 Emulsion Polymerization

162

5.9 Degradation

164

5.9.1 Depolymerization

164

5.9.2 Chain Scission

164

5.9.2.1 Nylon Hydrolysis

165

5.9.2.2 Thermo–Mechanical Degradation of Polypropylene

165

5.9.2.3 Thermo–Mechanical Degradation of Polyethylene

167

5.9.3 Loss of Side Groups

168

5.10 Problems

169

6 Polymer Molecular Weight and Distribution

172

6.1 Introduction

172

6.2 Types of Average Molecular Weights

173

6.2.1 Number Average Molecular Weight (?)

173

6.2.2 Weight Average Molecular Weight (?)

174

6.2.3 Viscosity Average Molecular Weight (?)

174

6.2.4 z-Average Molecular Weight (?)

175

6.3 Methods for Measuring Average Molecular Weights

176

6.3.1 Number Average Molecular Weight

176

6.3.1.1 Chain-End Analysis

176

6.3.1.2 Colligative Properties

176

6.3.2 Weight Average Molecular Weight

178

6.3.2.1 Light Scattering

178

6.3.2.2 Ultracentrifugation

179

6.3.3 Viscosity Average Molecular Weight

180

6.3.3.1 Viscosimetry of Dilute Polymer Solutions

180

6.3.4 z-Average Molecular Weight

185

6.4 Molecular Weight Distribution Curve

185

6.4.1 Size Exclusion Chromatography (SEC)

190

6.5 Most Probable Molecular Weight Distribution Function

194

6.5.1 Polycondensation with Linear Chains

194

6.5.2 Chain Polymerization

197

6.5.2.1 Chain Transfer Termination

197

6.5.2.2 Combination Termination

197

6.5.2.3 Polymerization without Termination

197

6.6 Molecular Weight and Chain Length

198

6.7 Molecular Weight Fractioning Principles

201

6.7.1 Precipitation from a Polymer Solution

201

6.7.2 Preparative Size Exclusion Chromatography (Prep-SEC)

202

6.8 Problems

202

7 Polymer Thermal Behavior

204

7.1 Characteristic Transition Temperatures in Polymers

204

7.1.1 Glass Transition Temperature or Tg

204

7.1.2 Crystalline Melting Temperature or Tm

205

7.1.3 Crystallization Temperature or Tc

208

7.1.4 Other Transition Temperatures sub-Tg

209

7.2 Free Volume Theory

210

7.3 Flory’s Theory for the Reduction of the Melt Temperature

213

7.3.1 Effect of the Diluent on Tm

214

7.3.2 Effect of the Polymer Molecular Weight in its Tm

216

7.3.3 Effect of the Comonomer Content in the Copolymer’s Tm

217

7.4 Engineering Polymer Temperatures

217

7.5 Main Experimental Techniques for the Determination of Transition Temperatures

218

7.5.1 Differential Scanning Calorimetry, DSC

218

7.5.2 Dynamic-Mechanical Thermal Analysis, DMTA

221

7.5.3 Vicat and HDT Softening Temperatures

223

7.6 Effect of the Chemical Structure on Tg and Tm

224

7.6.1 Structural Symmetry of the Main Chain

225

7.6.2 Rigidity/Flexibility of the Main Chain

226

7.6.3 Polarity of the Main Chain

228

7.6.4 Steric Effect of the Main Chain Side Group

230

7.6.4.1 Side Group Volume

231

7.6.4.2 Side Group Length

231

7.6.5 Residual Double Bond Isomerism

232

7.6.6 Copolymerization

233

7.6.6.1 Homogeneous, Miscellaneous, or Single-Phase Systems

233

7.6.6.2 Heterogeneous, Immiscible, or Polyphasic Systems

236

7.6.7 Polymer Molecular Weight

238

7.6.8 Branching

240

7.7 Influence of External Factors on Tg and Tm

241

7.8 Summary of the Factors Affecting Crystallinity, Tg, and Tm

242

7.9 Problems

243

8 Polymer Crystallization Kinetics

244

8.1 Crystal Nucleation

244

8.1.1 Nucleation Rate

246

8.2 Crystal Growth

246

8.3 Total Isothermal Crystallization

249

8.4 Avrami’s Isothermal Crystallization Kinetics Theory

250

8.4.1 Measuring Crystallization Kinetics via Dilatometry

251

8.4.2 Measuring Crystallization Kinetics via Differential Scanning Calorimetry (DSC)

254

8.5 Isothermal Crystallization Rate

259

8.6 Equilibrium Melting Temperature

260

8.7 Problems

261

9 Polymer Mechanical Behavior

262

9.1 Introduction

262

9.2 Polymer Viscoelasticity

263

9.2.1 Linear Viscoelasticity Models

264

9.2.1.1 Maxwell Model

266

9.2.1.2 Voigt Model

267

9.2.1.3 Combined Maxwell–Voigt Model

268

9.2.2 Creep and Stress Relaxation

268

9.2.3 Rubber Elasticity

271

9.3 Considerations upon Polymer Mechanical Testing

274

9.3.1 Testing Recording Stress–Strain Curves

274

9.3.2 Testing under Impact

278

9.4 Fracture Characteristics

280

9.4.1 Brittle Fracture Mechanism

280

9.4.2 Ductile Fracture Mechanism in Toughened Systems

281

9.4.2.1 Shear Yielding

281

9.4.2.2 Crazing

282

9.5 Parameters Affecting Polymer Mechanical Behavior

282

9.5.1 Chemical Structure

282

9.5.2 Degree of Crystallinity

283

9.5.3 Molecular Weight

284

9.5.4 Molecular Orientation

285

9.5.4.1 Peterlin Molecular Reorientation Model

285

9.5.4.2 Characterization of Molecular Orientation via Dichroic Ratio in Polarized Infrared

286

9.5.5 Copolymerization

289

9.5.6 Plasticization

289

9.5.7 Elastomer Toughening

292

9.5.8 Fiber Reinforcing

293

9.6 Superposition Principles

294

9.6.1 Boltzmann Stress Superposition Principle

294

9.6.2 Time–Temperature Superposition Principle

295

9.7 Reptation Theory

297

9.8 Polymer Physical States

298

9.9 Physico–Chemical Methods for Polymer Transformation

300

9.9.1 Physical Methods

300

9.9.1.1 Orientation

300

9.9.1.2 Plasticization

301

9.9.1.3 Solubilization

301

9.9.1.4 Foaming

301

9.9.1.5 Reinforcing

302

9.9.1.6 Toughening

302

9.9.2 Chemical Methods

302

9.9.2.1 Mastication

302

9.9.2.2 Cross-linking

303

9.9.2.3 Grafting

303

9.9.2.4 Oxidation

303

9.10 Problems

303

10 Experiments in Polymer Science

306

10.1 Identification of Plastics and Rubbers

306

10.1.1 Objective

306

10.1.2 Introduction

306

10.1.3 Materials

308

10.1.4 Equipment

308

10.1.5 Method

308

10.1.6 Results

309

10.2 Observation of Polymer Solubilization

311

10.2.1 Objective

311

10.2.2 Introduction

311

10.2.3 Materials

312

10.2.4 Equipment

312

10.2.5 Method

312

10.2.6 Results

313

10.2.7 Questions

313

10.3 Observation of the Precipitation of a Polymer Solution

314

10.3.1 Objective

314

10.3.2 Introduction

314

10.3.3 Materials

314

10.3.4 Equipment

315

10.3.5 Method

315

10.3.6 Results

316

10.3.7 Questions

317

10.4 Identification of Polymers by Infrared Absorption Spectroscopy

318

10.4.1 Objective

318

10.4.2 Introduction

318

10.4.3 Materials

321

10.4.4 Equipment

321

10.4.5 Method

321

10.4.6 Results

321

10.4.7 Questions

322

10.5 Characterization of Polymers by Infrared Absorption Spectroscopy

322

10.5.1 Introduction

322

10.5.2 Determination of Cis/Trans/Vinyl Isomer Concentration in Polybutadiene

323

10.5.2.1 Objective

323

10.5.2.2 Materials

323

10.5.2.3 Equipment

323

10.5.2.4 Method

324

10.5.2.5 Results

324

10.5.3 Quantification of the Components in a Binary Polymer Blend

326

10.5.3.1 Objective

326

10.5.3.2 Materials

326

10.5.3.3 Equipment

326

10.5.3.4 Method

326

10.5.3.5 Results

327

10.5.3.6 Questions

329

10.6 Characterization of Polymer Molecular Orientation via the IR Dichroic Ratio

329

10.6.1 Objective

329

10.6.2 Introduction

329

10.6.3 Materials

330

10.6.4 Equipment

330

10.6.5 Method

330

10.6.6 Results

332

10.6.7 Questions

333

10.7 Observation of the Spherulitic Crystallization in Polymers

333

10.7.1 Objective

333

10.7.2 Introduction

333

10.7.3 Materials

334

10.7.4 Equipment

334

10.7.5 Method

334

10.7.6 Results

336

10.7.7 Supplementary Activities

336

10.8 Determination of the Degree of Crystallinity by Density Measurements

338

10.8.1 Objective

338

10.8.2 Introduction

338

10.8.3 Materials

339

10.8.4 Equipment

340

10.8.5 Preparation of the Liquid Mixture Having the Same Density as the Sample

340

10.8.6 Pycnometry

340

10.8.7 Results

341

10.8.8 Questions

343

10.9 Determination of the Degree of Crystallinity by Differential Scanning Calorimetry (DSC)

343

10.9.1 Objective

343

10.9.2 Introduction

343

10.9.3 Materials

344

10.9.4 Equipment

344

10.9.5 Method

344

10.9.6 Results

345

10.9.7 Questions

345

10.10 Free-Radical Bulk Polymerization of Methyl Methacrylate

346

10.10.1 Objective

346

10.10.2 Introduction

346

10.10.3 Materials

347

10.10.4 Equipment

347

10.10.5 Method

347

10.10.6 Results

348

10.10.7 Questions

348

10.10.8 Supplementary Activities

348

10.11 Determination of the Viscosity Average Molecular Weight

349

10.11.1 Objective

349

10.11.2 Introduction

349

10.11.3 Materials

350

10.11.4 Equipment

350

10.11.5 Method

350

10.11.6 Results

352

10.11.7 Questions

353

10.12 Determination of the Melt Flow Index (MFI)

353

10.12.1 Objective

353

10.12.2 Introduction

354

10.12.3 Materials

354

10.12.4 Equipment

354

10.12.5 Method

355

10.12.6 Results

356

10.12.7 Questions

356

10.13 Determination of Vicat Softening Temperature

356

10.13.1 Objective

356

10.13.2 Introduction

356

10.13.3 Materials

357

10.13.4 Equipment

357

10.13.5 Method

358

10.13.6 Results

358

10.13.7 Questions

359

10.14 Determination of Cross-linking Density in Vulcanized Rubbers

359

10.14.1 Objective

359

10.14.2 Introduction

359

10.14.3 Materials

360

10.14.4 Equipment

360

10.14.5 Method

360

10.14.6 Results

361

10.14.7 Questions

361

11 Further Reading

362

12 Appendix A

366

12.1 Terminology

366

12.2 Abbreviations

373

13 Appendix B

376

Index

388

 

© 2009-2024 ciando GmbH