Designing Plastic Parts for Assembly

Paul A. Tres

Designing Plastic Parts for Assembly

2017

438 Seiten

Format: PDF, ePUB

E-Book: €  119,99

E-Book kaufen

E-Book kaufen

ISBN: 9781569907160

 

Contents

16

Foreword to the Eighth Edition

6

Preface to the Eighth Edition

8

Foreword to the First Edition

10

Preface to the First Edition

12

Acknowledgments

14

1 Understanding Plastic Materials

24

1.1 Basic Resins

24

1.1.1 Thermoplastics

24

1.1.2 Thermosets

25

1.2 Basic Structures

25

1.2.1 Crystalline

25

1.2.2 Amorphous

26

1.2.3 Liquid Crystal Polymer (LCP)

27

1.2.4 New Polymer Technologies

27

1.2.4.1 Inherently Conductive Polymers (ICP)

27

1.2.4.2 Electro-Optic Polymers (EOP)

28

1.2.4.3 Biopolymers

29

1.3 Homopolymer vs. Copolymer

30

1.4 Reinforcements

30

1.5 Fillers

31

1.5.1 Glass Spheres

31

1.5.1.1 Microsphere Properties

33

1.5.1.2 Compounding

33

1.5.1.3 Injection Molding

34

1.5.1.4 Mechanical Properties in Injection-Molded Thermoplastic Applications

34

1.6 Additives

36

1.7 Physical Properties

37

1.7.1 Density and Specific Gravity

37

1.7.2 Elasticity

38

1.7.2.1 Case History: Elasticity and Denier

39

1.7.3 Plasticity

41

1.7.4 Ductility

41

1.7.5 Toughness

42

1.7.6 Brittleness

42

1.7.7 Notch Sensitivity

43

1.7.8 Isotropy

47

1.7.9 Anisotropy

47

1.7.10 Water Absorption

47

1.7.11 Mold Shrinkage

48

1.8 Mechanical Properties

50

1.8.1 Normal Stress

50

1.8.2 Normal Strain

50

1.8.3 Stress-Strain Curve

51

1.9 Creep

53

1.9.1 Introduction

53

1.9.2 Creep Experiments

53

1.9.3 Creep Curves

54

1.9.4 Stress-Relaxation

56

1.10 Impact Properties

56

1.11 Thermal Properties

57

1.11.1 Melting Point

58

1.11.2 Glass Transition Temperature

58

1.11.3 Heat Deflection Temperature

58

1.11.4 Coefficient of Thermal Expansion

58

1.11.5 Thermal Conductivity

61

1.11.6 Thermal Influence on Mechanical Properties

61

1.11.7 Case History: Planetary Gear Life Durability

62

2 Understanding Safety Factors

68

2.1 What Is a Safety Factor

68

2.2 Using the Safety Factors

69

2.2.1 Design Safety Factors

69

2.2.1.1 Design Static Safety Factor

69

2.2.1.2 Design Dynamic Safety Factor

69

2.2.1.3 Design Time-Related Safety Factor

69

2.2.2 Material Properties Safety Factor

70

2.2.3 Processing Safety Factors

71

2.2.4 Operating Condition Safety Factor

71

3 Strength of Material for Plastics

72

3.1 Tensile Strength

72

3.1.1 Proportional Limit

73

3.1.2 Elastic Stress Limit

73

3.1.3 Yield Stress

74

3.1.4 Ultimate Stress

74

3.2 Compressive Stress

75

3.3 Shear Stress

76

3.4 Torsion Stress

77

3.5 Elongations

78

3.5.1 Tensile Strain

78

3.5.2 Compressive Strain

79

3.5.3 Shear Strain

79

3.6 True Stress and Strain vs. Engineering Stress and Strain

80

3.7 Poisson’s Ratio

81

3.8 Modulus of Elasticity

83

3.8.1 Young’s Modulus

83

3.8.2 Tangent Modulus

83

3.8.3 Secant Modulus

84

3.8.4 Creep (Apparent) Modulus

85

3.8.5 Shear Modulus

85

3.8.6 Flexural Modulus

86

3.8.7 The Use of Various Moduli

87

3.9 Stress Relations

87

3.9.1 Introduction

87

3.9.2 Experiment

88

3.9.3 Equivalent Stress

88

3.9.4 Maximum Normal Stress

88

3.9.5 Maximum Normal Strain

89

3.9.6 Maximum Shear Stress

89

3.9.7 Maximum Deformation Energy

90

3.10 ABCs of Plastic Part Design

91

3.10.1 Constant Wall

91

3.10.2 Fillets

93

3.10.3 Boss Design

95

3.10.4 Rib Design

96

3.10.5 Case History: Ribs

98

3.11 Conclusions

101

4 Nonlinear Considerations

102

4.1 Material Considerations

102

4.1.1 Linear Material

102

4.1.2 Nonlinear Materials

102

4.2 Geometry

103

4.2.1 Linear Geometry

103

4.2.2 Nonlinear Geometry

104

4.3 Finite Element Analysis (FEA)

104

4.3.1 FEA Method Application

104

4.3.2 Using FEA Method

105

4.3.3 Most Common FEA Codes

105

4.4 Conclusions

106

5 Welding Techniques for Plastics

108

5.1 Ultrasonic Welding

108

5.1.1 Ultrasonic Equipment

108

5.1.2 Horn Design

112

5.1.3 Ultrasonic Welding Techniques

114

5.1.4 Control Methods

117

5.1.4.1 Common Issues with Welding

121

5.1.4.2 Joint Design

124

5.1.4.3 Butt Joint Design

125

5.1.4.4 Shear Joint Design

126

5.1.4.5 Torsional Ultrasonic Welding

129

5.1.4.6 Case History: Welding Dissimilar Polymers

131

5.2 Ultrasonic (Heat) Staking

135

5.2.1 Standard Stake Design

136

5.2.2 Flush Stake Design

137

5.2.3 Spherical Stake Design

138

5.2.4 Hollow (Boss) Stake Design

138

5.2.5 Knurled Stake Design

139

5.3 Ultrasonic Spot Welding

141

5.4 Ultrasonic Swaging

141

5.5 Ultrasonic Stud Welding

142

5.6 Spin Welding

142

5.6.1 Process

143

5.6.2 Equipment

146

5.6.3 Welding Parameters

146

5.6.4 Joint Design

148

5.7 Hot Plate Welding

151

5.7.1 Process

153

5.7.2 Joint Design

154

5.8 Vibration Welding

157

5.8.1 Process

159

5.8.2 Equipment

161

5.8.3 Joint Design

162

5.8.4 Common Issues with Vibration Welding

165

5.9 Electromagnetic Welding

167

5.9.1 Equipment

168

5.9.2 Process

168

5.9.3 Joint Design

169

5.10 Radio Frequency (RF) Welding

171

5.10.1 Equipment

172

5.10.2 Process

172

5.11 Laser Welding

174

5.11.1 Equipment

175

5.11.2 Process

176

5.11.3 Noncontact Welding

177

5.11.4 Transmission Welding

178

5.11.5 Intermediate Film & ClearWeld™ Welding

183

5.11.6 Polymers

185

5.11.7 Applications

185

5.12 Conclusion

190

6 Press Fitting

192

6.1 Introduction

192

6.2 Definitions and Notations

193

6.3 Geometric Definitions

193

6.4 Safety Factors

194

6.5 Creep

194

6.6 Loads

195

6.7 Press Fit Theory

196

6.8 Design Algorithm

198

6.9 Case History: Plastic Shaft and Plastic Hub

199

6.9.1 Shaft and Hub Made of Different Polymers

199

6.9.2 Safety Factor Selection

199

6.9.3 Material Properties

200

6.9.4 Shaft Material Properties at 23°C

202

6.9.4.1 Shaft Material Properties at 93°C

204

6.9.4.2 Creep Curves at 23°C

204

6.9.4.3 Creep at 93°C

206

6.9.4.4 Pulley at 23°C

207

6.9.4.5 Pulley at 93°C

210

6.9.4.6 Creep, Pulley at 23°C

211

6.9.4.7 Creep, Pulley at 93°C

212

6.10 Solutions: Plastic Shaft, Plastic Hub

213

6.10.1 Case A

213

6.10.2 Case B

215

6.10.3 Case C

216

6.10.4 Case D

217

6.11 Case History: Metal Ball Bearing and Plastic Hub

218

6.11.1 Fusible Core Injection Molding

218

6.11.2 Upper Intake Manifold Background

220

6.11.3 Design Algorithm

223

6.11.4 Material Properties

224

6.11.4.1 CAMPUS

225

6.11.5 Solution

227

6.11.5.1 Necessary IF at Ambient Temperature

232

6.11.5.2 IF Available at 118°C

233

6.11.5.3 IF Verification at –40°C

233

6.11.5.4 Verification of Stress Level at –40°C, Time = 0

234

6.11.5.5 Stress Level at –40°C, Time = 5,000 h

234

6.11.5.6 Stress Level at 23°C, Time = 5,000 h

235

6.11.5.7 Stress Level at 118°C, Time = 5,000 h

235

6.12 Successful Press Fits

236

6.13 Conclusion

240

7 Living Hinges

242

7.1 Introduction

242

7.2 Classic Design for PP and PE

243

7.3 Common Living Hinge Design

244

7.4 Basic Design for Engineering Plastics

245

7.5 Living Hinge Design Analysis

245

7.5.1 Elastic Strain Due to Bending

246

7.5.1.1 Assumptions

246

7.5.1.2 Geometric Conditions

247

7.5.1.3 Strain Due to Bending

247

7.5.1.4 Stress Due to Bending

247

7.5.1.5 Closing Angle of the Hinge

248

7.5.1.6 Bending Radius of the Hinge

248

7.5.2 Plastic Strain Due to Pure Bending

249

7.5.2.1 Assumptions

249

7.5.2.2 Strain Due to Bending

249

7.5.3 Plastic Strain Due to a Mixture of Bending and Tension

250

7.5.3.1 Tension Strain

251

7.5.3.2 Bending Strain

253

7.5.3.3 Neutral Axis Position

254

7.5.3.4 Hinge Length

254

7.5.3.5 Elastic Portion of the Hinge Thickness

257

7.6 Computer Flow Chart

258

7.6.1 Computer Notations

258

7.7 Computer Flow Chart Equations

260

7.8 Example: Case History

262

7.8.1 World-Class Connector

262

7.8.1.1 Calculations for the “Right Way” Assembly

263

7.8.1.2 Calculations for the “Wrong Way” Assembly

265

7.8.2 Comparison Material

266

7.8.2.1 “Right Way” Assembly

267

7.8.2.2 “Wrong Way” Assembly

268

7.8.3 Ignition Cable Bracket

268

7.8.3.1 Initial Design

269

7.8.3.2 Improved Design

270

7.9 Processing Errors for Living Hinges

271

7.10 Coined Hinges

273

7.11 Oil-Can Designs

276

7.12 Conclusion

278

7.13 Exercise

278

8 Snap Fitting

284

8.1 Introduction

284

8.2 Material Considerations

285

8.3 Design Considerations

288

8.3.1 Safety Factors

290

8.4 Snap Fit Theory

291

8.4.1 Notations

291

8.4.2 Geometric Conditions

293

8.4.3 Stress/Strain Curve and Formulae

294

8.4.4 Instantaneous Moment of Inertia

295

8.4.5 Angle of Deflection

296

8.4.6 Integral Solution

296

8.4.7 Equation of Deflection

298

8.4.8 Integral Solution

298

8.4.9 Maximum Deflection

299

8.4.10 Self-Locking Angle

302

8.5 Case History: One-Way Continuous Beam with Rectangular Cross Section

302

8.5.1 Geometrical Model

304

8.6 Annular Snap Fits

307

8.6.1 Case History: Annular Snap Fit, Rigid Beam with Soft Mating Part

308

8.6.2 Notations

308

8.6.3 Geometric Definitions

309

8.6.4 Material Selections and Properties

310

8.6.5 Basic Formulas

310

8.6.6 Angle of Assembly

312

8.6.7 Case History: Digital Wristwatch

312

8.7 Torsional Snap Fits

318

8.7.1 Notations

318

8.7.2 Basic Formulae

320

8.7.3 Material Properties

321

8.7.4 Solution

321

8.8 Case History: Injection Blow Molded Bottle Assembly

323

8.9 Tooling

325

8.10 Case History: Snap Fits That Kill

326

8.11 Assembly Procedures

330

8.12 Issues with Snap Fitting

333

8.13 Serviceability

334

8.14 Exercise

334

8.14.1 Solution

336

8.15 Conclusions

340

9 Bonding

342

9.1 Failure Theories

342

9.2 Surface Energy

343

9.3 Surface Treatment

347

9.4 Types of Adhesives

350

9.5 Advantages and Limitations of Adhesives

352

9.6 Stress Cracking in Bonded Joints of Adhesives

353

9.7 Joint Design

354

9.8 Conclusion

357

10 In-Mold Assembly

358

10.1 Overmolding

359

10.2 In-Mold Assembly

360

10.3 Joint Design

361

10.4 Tool Design

364

10.5 Case Histories: Automotive IMA

370

10.6 Conclusion

372

11 Fasteners

374

11.1 Thread Forming

375

11.2 Case History: Automotive Undercarriage Splash Shield

385

11.3 Thread Cutting

391

11.4 Conclusion

392

Appendix A: Enforced Displacement

394

Appendix B: Point Force

402

Appendix C: Molding Process Data Record

410

Appendix D: Tool Repair & Inspection Record

412

References

414

World Wide Web References Related to Plastic Part Design

424

About the Author Paul A. Tres

432

Index

434

 

© 2009-2024 ciando GmbH