Nano- and Micromechanics of Polymer Blends and Composites

József Karger-Kocsis, Stoyko Fakirov

Nano- and Micromechanics of Polymer Blends and Composites

2009

624 Seiten

Format: PDF

E-Book: €  299,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446430129

 

Preface

6

Content

8

Contributors

18

PART I POLYMERS

24

Chapter 1 Nano- and Micromechanics of Crystalline Polymers

26

1.1. Introduction

26

1.2. Tensile deformation of crystalline polymers

27

1.3. Cavitation in tensile deformation

27

1.4. Tensile deformation of polyethylene and polypropylene

31

1.5. Deformation micromechanisms in crystalline polymers

36

1.6. Molecular mechanisms at a nanometer scale

39

1.7. Dislocations in crystal plasticit

46

1.8. Generation of dislocations

48

1.9. Competition between crystal plasticity and cavitation

57

1.10. Micromechanics modeling in semicrystalline polymers

58

1.10.1. Microstructure and mechanical properties

58

1.10.2. The micromechanical models

59

1.10.3. Idealizing the microstructure of semicrystalline polymers

61

1.10.4. Elastic behavior prediction

63

References

71

Chapter 2 Modeling Mechanical Propertiesof Segmented Polyurethanes

82

2.1. Introduction

82

2.2. Predicting Young's modulus of segmented polyurethanes

86

2.2.1. Relationship between Young's modulus and formulation – experimental observations

86

2.2.2. Theory

87

2.2.3. Young's modulus: comparing theory with experiments

95

2.3. Modeling tensile stress-strain behavior

99

2.4. Linear viscoelasticity

105

2.5. Non-equilibrium factors and their influence on mechanical properties

107

2.6. Conclusions and Outlook

107

Acknowledgment

108

References

108

PART II NANOCOMPOSITES:INFLUENCE OF PREPARATION

114

Chapter 3 Nanoparticles/Polymer Composites:Fabrication and Mechanical Properties

116

3.1. Introduction

116

3.2. Dispersion-oriented manufacturing of nanocomposites

118

3.2.1. Conventional two-step manufacturing

118

3.2.2. Specific two-step manufacturing

130

3.2.3. One-step manufacturing

141

3.3. Dispersion and filler/matrix interaction-oriented manufacturing of nanocomposites

143

3.3.1. Two-step manufacturing in terms of in situ reactive compatibilization

143

3.3.2. One-step manufacturing in terms of in situ graft and crosslinking

147

3.4. Dispersion, filler/filler interaction and filler/matrix interactionoriented manufacturing of nanocomposites

152

3.5. Conclusions

158

Acknowledgements

159

References

159

Chapter 4 Rubber Nanocomposites: New Developments, New Opportunities

164

4.1. Introduction

164

4.2. General considerations on elastomeric composites

165

4.3. Spherical in situ generated reinforcing particles

167

4.4. Carbon nanotube-filled rubber composites

176

4.5. Conclusions

184

References

185

Chapter 5 Organoclay, Particulate and Nanofibril Reinforced Polymer-Polymer Composites: Manufacturing, Modeling and Applications

190

5.1. Introduction

190

5.2. Polypropylene/organoclay nanocomposites: experimental characterisation and modeling

192

5.2.1. Peculiarities of polymer/clay nanocomposites

192

5.2.2. Parametric study and associated properties of PP/organoclay nanocomposites

194

5.2.3. Evaluation of the experimental data by means of Taguchi and Pareto ANOVA methods

197

5.2.4. Materials, manufacturing and characterization of nano composites

201

5.2.5. Analytical models for composites

202

5.2.6. Comparisons of experimental results with the calculated values

205

5.3. The dispersion problem in the case of polymer-polymer nanocomposites

208

5.3.1. Manufacturing of nanofibrillar polymer-polymer composites

210

5.3.2. Nanofibrillar vs. microfibrillar polymer-polymer composites and their peculiarities

211

5.4. Directional, thermal and mechanical characterization of polymerpolymernanofibrillar composites

213

5.4.1. Directional state of NFC as revealed by wide-angle X-ray scattering

213

5.4.2. Thermal characterization of NFC

215

5.4.3. Mechanical properties of NFC

216

5.5. Potentials for application of nanofibrillar composites and the materials developed from neat nanofibrils

219

5.6. Conclusions and outlook

222

References

224

PART III NANO- AND MICROCOMPOSITES:INTERPHASE

230

Chapter 6 Viscoelasticity of Amorphous Polymer Nanocomposites with Individual Nanoparticles

232

6.1. Introduction

232

6.2. Brief physics of amorphous polymer matrices

233

6.2.1. Equilibrium structure of amorphous chains

233

6.2.2. Microscopic relaxation modes and segmental mobility

235

6.2.3. Entropy vs. energy driven mechanical response

237

6.3. Basic aspects of amorphous polymer nanocomposites

239

6.3.1. Structure of surface adsorbed chains

240

6.3.2. Segmental immobilization of chains in the presence of solid surfaces

242

6.4. Reinforcement of amorphous nanocomposite below and abovematrix Tg

245

6.5. Strain induced softening of amorphous polymer nanocomposites

251

6.6. Relaxation of chains in the presence of nanoparticles

256

6.7.`Conclusions and outlook

258

References

259

Chapter 7 Interphase Phenomena in Polymer Micro- and Nanocomposites

264

7.1. Introduction

264

7.2. Micro-scale interphase in polymer composites

269

7.3. Nano-scale interphase

273

7.4. Chain immobilization on the nano-scale

275

7.5. Characteristic length-scale in polymer matrix nanocomposites

278

7.6. Conclusions and outlook

280

References

281

PART IV NANO- AND MICROCOMPOSITES: CHARACTERIZATION

290

Chapter 8 Deformation Behavior of Nanocomposites Studied by X-Ray Scattering: Instrumentation and Methodology

292

8.1. Introduction

292

8.2. Scattering theory and materials structure

295

8.2.1. Relation between a CDF and IDFs

298

8.3. Analysis options derived from scattering theory

299

8.3.1. Completeness – a preliminary note

299

8.3.2. Analysis options

299

8.3.3. Parameters, functions and operations

300

8.4. The experiment

301

8.4.1. Principal design

301

8.4.2. Engineering solutions

302

8.4.3. Scattering data and its evaluation

307

8.5. Techniques: Dynamic vs. stretch-hold

309

8.6. Advanced goal: Identification of mechanisms

309

8.7. Observed promising effects from stretch-hold experiments

312

8.7.1. Orientation of nanofibrils in highly oriented polymer blends by means of USAXS

312

8.7.2. USAXS studies on undrawn and highly drawn PP/PET blends

314

8.8. Choosing experiments

316

8.8.1. Experiments with a macrobeam

316

8.8.2. Experiments with a microbeam

317

8.9. Conclusion and outlook

318

References

319

Chapter 9 Creep and Fatigue Behavior of Polymer Nanocomposites

324

9.1. Introduction

324

9.2. Generalities on the creep behavior of viscoelastic materials

325

9.3. Generalities on the fatigue resistance of polymeric materials

329

9.4. Creep behavior of polymer nanocomposites

332

9.4.1. Creep response of PNCs containing one-dimensional nanofillers

332

9.4.2. Creep response of PNCs containing two-dimensional nanofillers

338

9.4.3. Creep response of PNCs containing three-dimensional nanoparticles

340

9.5. Fatigue resistance of polymer nanocomposites

344

9.5.1. Fatigue behavior of PNCs containing one-dimensionalnanofillers

345

9.5.2. Fatigue behavior of PNCs containing two-dimensional nanofillers

349

9.5.3. Fatigue behavior of PNCs containing three-dimensional nanoparticles

355

9.6. Conclusions and outlook

357

References

358

Chapter 10 Deformation Mechanisms of Functionalized Carbon Nanotube Reinforced Polymer Nanocomposites

364

10.1. Introduction

364

10.2. Deformation characteristics

366

10.2.1. CNT/glassy thermoplastic nanocomposites

368

10.2.2. CNT/semicrystalline thermoplastic nanocomposites

379

10.2.3. CNT/epoxy nanocomposites

385

10.2.4. CNT/elastomer nanocomposites

392

10.3. Conclusions

394

References

394

Chapter 11 Fracture Properties and Mechanisms of Polyamide/Clay Nanocomposites

400

11.1. Introduction

400

11.2. Dispersion of clay in polymers

401

11.3. Crystallization behavior

407

11.4. Fracture properties and mechanisms

410

11.4.1. Improved toughness in polymer/clay nanocomposites

410

11.4.2. Brittleness of polymer/clay nanocomposites

416

11.4.3. Approaches to improve fracture toughness of polymer/claynanocomposites

422

11.5. Conclusions and outlook

437

References

438

Chapter 12 On the Toughness of "Nanomodified" Polymers and Their Traditional Polymer Composites

448

12.1. Introduction

448

12.2. Toughness assessment

450

12.3. Nanomodified thermoplastics

451

12.3.1. Amorphous polymers

451

12.3.2. Semicrystalline polymers

455

12.4. Nanomodified thermosets

467

12.4.1. (Neat) Resins

467

12.4.2. Toughened and hybrid resins

476

12.5. Nanomodified traditional composites

479

12.5.1. Thermoplastic matrices

480

12.5.2. Thermoset matrices

480

12.6. Conclusions and outlook

483

References

484

Chapter 13 Micromechanics of Polymer Blends: Microhardness of Polymer Systems Containing a Soft Componentand/or Phase

494

13.1. Introduction

494

13.2. The peculiarity of polymer systems containing a soft component and/or phase

495

13.3. Comparison between measured and computed microhardness values for various systems

500

13.3.1. Two-component multiphase systems comprising soft phase(s) (blends of semicrystalline homopolymers)

500

13.3.2. One-component multiphase systems containing soft phase(s) (polyblock copolymers)

501

13.3.3. Two-component one-phase systems (miscible blends of amorphous polymers)

505

13.3.4. Two-component two-phase amorphous systems containing a soft phase

507

13.3.5. One-component two-phase systems (semicrystalline polymers with Tg below room temperature)

510

13.4. Main factors determining the microhardness of polymer systems containing a soft component and/or phase

512

13.4.1. Importance of the ratio hard/soft components (or phases)

512

13.4.2. Crystalline or amorphous solids

513

13.4.3. Copolymers vs. polymer blends

515

13.4.4. New data on the relationship between H and Tg of amorphous polymers

516

13.4.5. Modified additivity law for systems containing soft component and/or phase

518

13.5. Microhardness on the interphase boundaries in polymer blends and composites and doubly injection molding processing

518

13.5.1. Microhardness on the interphase boundaries in polymer blends

518

13.5.2. Microhardness on the interphase boundaries in polymers after double injection molding processing

525

13.6. Conclusions and outlook

533

References

535

PART V NANOCOMPOSITES: MODELING

540

Chapter 14 Some Monte Carlo Simulations on Nanoparticle Reinforcement of Elastomers

542

14.1. Introduction

542

14.2. Description of simulations

543

14.2.1. Rotational isomeric state theory for conformation-dependent properties

543

14.2.2. Distribution functions

543

14.2.3. Applications to unfilled elastomers

544

14.2.4. Applications to filled elastomers

545

14.3. Spherical particles

545

14.3.1. Particle sizes, shapes, concentrations, and arrangements

545

14.3.2. Distributions of chain end-to-end distances

546

14.3.3. Stress-strain isotherms

548

14.3.4. Effects of arbitrary changes in the distributions

549

14.3.5. Some preliminary results on physisorption

551

14.3.6. Relevance of cross linking in solution

553

14.3.7. Detailed descriptions of conformational changes during chain extension

557

14.4. Ellipsoidal particles

557

14.4.1. General features

557

14.4.2. Oblate ellipsoids

559

14.5. Aggregated particles

560

14.5.1. Real systems

560

14.5.2. Types of aggregates for modeling

560

14.5.3. Deformabilities of aggregates

561

14.6. Potential refinements

561

14.7. Conclusions

561

References

562

Chapter 15 Modeling of Polymer Clay Nanocomposites for a Multiscale Approach

568

15.1. Introduction

568

15.2. Sequential multiscale modeling

570

15.3. Representative volume element

571

15.3.1. Effective elastic material properties

572

15.3.2. Statistical ensemble

573

15.3.3. Periodic boundary conditions

574

15.4. Generating RVE geometry

576

15.4.1. Number of platelets

576

15.4.2. Generation of platelet configurations

577

15.5. Periodic finite element mesh

579

15.6. Numerical solution process

581

15.6.1. Finite element analysis of boundary value problem

581

15.6.2. Ensemble averaged elastic properties

583

15.6.3. Automation

584

15.7. Elastic RVE numerical results

585

15.7.1. Fully exfoliated straight platelets

588

15.7.2. Effect of platelet orientation

590

15.7.3. Curved platelets

592

15.7.4. Multi-layer stacks of intercalated platelets

595

15.8. Conclusions

597

References

599

List of Acknowledgements

602

Author Index

614

Subject Index

620

 

© 2009-2024 ciando GmbH