Moldflow Design Guide - A Resource for Plastics Engineers

Jay Shoemaker

Moldflow Design Guide

A Resource for Plastics Engineers

2013

348 Seiten

Format: PDF, Online Lesen

E-Book: €  179,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446418547

 

Foreword

6

Preface

8

Acknowledgements

10

Contents

12

1 Polymer Flow Behavior in Injection Molds

22

1.1 Phases of Injection Molding

22

1.1.1 How Plastic Fills a Mold

22

1.1.2 The Filling Phase

24

1.1.3 The Pressurization Phase

27

1.1.4 The Compensation Phase

27

1.2 How Do Plastics Flow?

28

1.2.1 Material Behavior

28

1.2.2 Deformation

29

1.2.3 Viscoelastic Behavior

29

1.2.4 Melt Shear Viscosity

30

1.2.5 Newtonian Fluid vs. Non-Newtonian Fluid

31

1.2.6 Shear-thinning Behavior

31

1.2.7 Shear Rate Distribution

32

1.2.8 Pressure-driven Flow

32

1.2.9 Pressure Gradient and Injection Times

34

1.2.10 Melt Flow Length

34

1.2.11 Injection Pressure vs. Fill Time

34

1.2.12 Flow Instability

36

2 Molding Conditions and Injection Pressure

38

2.1 Injection-pressure Overview

38

2.1.1 Pressure Drives the Flow Front

39

2.2 Factors Influencing Injection-pressure Requirements

39

2.3 Equations

41

2.3.1 Circular Channel Flow

41

2.3.2 Strip Channel Flow

41

2.4 Effect of Molding Conditions

42

2.4.1 Part Quality

42

2.4.2 Melt Temperature

43

2.4.3 Mold Temperature

43

2.4.4 Fill Time

44

2.4.5 Shear Stress Variation

44

2.4.6 Packing Pressure and Time

45

2.4.7 Summary

46

2.4.8 Back Flow

47

2.5 Using Moldflow to Determine Optimum Molding Conditions

47

2.5.1 Part

48

2.5.2 Molding Window Size

48

2.5.3 Injection Pressure

49

2.5.4 Flow Front Temperature

50

2.5.5 Cooling Time

51

2.5.6 Summary

52

3 Filling Pattern

54

3.1 Filling Pattern Overview

54

3.1.1 What Is the Filling Pattern?

54

3.2 Flow in Complex Molds

55

3.2.1 Overpack

55

3.2.2 Racetrack Effect

56

3.2.3 Varying Injection Rate

56

3.2.4 Underflow Effect

57

3.2.5 Hesitation Effect

58

3.2.6 Weld Lines

59

3.2.7 Meld Lines

59

3.2.8 Sink Marks

59

3.2.9 Multidirectional Flow

60

3.2.10 Unstable Flow

61

3.2.11 Simple Flow Pattern

62

3.3 Flow-front Velocity and Flow-front Area

62

3.3.1 What are FFV and FFA?

62

3.3.2 Flow-front Velocity Influences Filling Pattern

62

3.3.3 Equation

63

3.4 Using Moldflow to Determine the Filling Pattern

64

3.4.1 Computer Simulation Can Eliminate Molding Trials

64

3.4.2 Using a Flow Analysis

64

3.5 Using Moldflow to Achieve Constant FFV

65

3.5.1 Controlling the FFV Through Ram Speed

65

4 Moldflow Design Principles

68

4.1 Product Design and Moldflow

68

4.2 Sequence of Analysis

68

4.2.1 Part Filling Optimization

69

4.2.2 Molding Conditions

69

4.2.3 Runner Design

69

4.2.4 Cooling Optimization

70

4.2.5 Packing Optimization

70

4.2.6 Warpage Optimization

70

4.3 Moldflow Flow Concepts

70

4.3.1 Unidirectional and Controlled Flow Pattern

71

4.3.2 Flow Balancing

72

4.3.3 Constant Pressure Gradient

73

4.3.4 Maximum Shear Stress

74

4.3.5 Uniform Cooling

75

4.3.6 Positioning Weld and Meld Lines

76

4.3.7 Avoid Hesitation Effects

76

4.3.8 Avoid Underflow

76

4.3.9 Balancing with Flow Leaders and Flow Deflectors

78

4.3.10 Controlled Frictional Heat

79

4.3.11 Thermal Shutoff of Runners

79

4.3.12 Acceptable Runner/Cavity Ratio

80

5 Meshes Used In Moldflow Analyses

82

5.1 Mesh Types Used by Moldflow

82

5.1.1 Finite Elements Used in Moldflow

82

5.1.2 Mesh Types

83

5.1.3 Solver Assumptions

84

5.2 Mesh Requirements

85

5.2.1 Mesh Density Considerations

85

5.2.2 Part Details

88

5.3 Geometry Creation

89

5.4 Importing Geometry

90

5.5 Using Different Mesh Types

90

5.5.1 Door Panel

90

5.5.2 Manifold

91

6 Product Design

92

6.1 Material Properties for Product Design

92

6.1.1 Plastics Are Sensitive to Operating Conditions

92

6.1.2 Stress-Strain Behavior

93

6.1.3 Creep and Stress Relaxation

98

6.1.4 Fatigue

100

6.1.5 Impact strength

101

6.1.6 Thermal Mechanical Behavior

101

6.2 Design for Strength

103

6.2.1 Predicting Part Strength

103

6.2.2 Loading/Operating Conditions

103

6.3 Part Thickness

107

6.3.1 Part Thickness Drives Quality and Cost

107

6.3.2 Cycle Time Increases with Thickness

107

6.3.3 Thick Parts Tend to Warp

107

6.3.4 Thin, Uniform Parts Improve Surface Quality

108

6.3.5 Reducing Part Thickness

108

6.4 Boosting Structural Integrity with Ribs

109

6.4.1 Structural Integrity: the Goal of Every Design

109

6.4.2 Designing Ribs

109

6.5 Design for Assembly

111

6.5.1 Molding One Part vs. Separate Components

111

6.5.2 Tolerances: Fit between Parts

111

6.5.3 Press-fit Joints

112

6.5.4 Snap-fit Joints

114

6.5.5 Cantilever Snap Joints

116

6.5.6 Torsion Snap-fit Joints

117

6.5.7 Fasteners

119

6.5.8 Inserts

122

6.5.9 Welding Processes

122

7 Gate Design

124

7.1 Gate Design Overview

124

7.1.1 What Is a Gate?

124

7.1.2 Single vs. Multiple Gates

124

7.1.3 Gate Dimensions

124

7.1.4 Gate Location

125

7.2 Gate Types

125

7.2.1 Manually Trimmed Gates

125

7.2.2 Automatically Trimmed Gates

131

7.3 Design Rules

134

7.3.1 Determining the Number of Gates

134

7.3.2 Flow Patterns

136

7.3.3 Gate Position

137

7.3.4 Avoiding Common Problems

143

7.3.5 Gate Length

143

7.3.6 Gate Thickness

143

7.3.7 Freeze-off Time

144

7.4 Using Moldflow for Gate Design

144

7.4.1 Gate Location

144

7.4.2 Molding Window Size for the Three Gate Locations

145

7.4.3 Filling Pattern

146

7.4.4 Gate Size Based on Shear Rate

146

8 Runner System Design

148

8.1 Definitions

148

8.1.1 Feed System

148

8.1.2 Runner System

148

8.1.3 Cold Runner

148

8.1.4 Hot Runner

149

8.1.5 Hot Manifold

149

8.1.6 Hot Drop

149

8.1.7 Sprue

149

8.2 Runner System Design Principles

150

8.2.1 Benefits of Good Runner Design

150

8.2.2 Runner Design Philosophy

150

8.2.3 Flow Balancing

151

8.2.4 Flow Control

151

8.2.5 Frictional Heating in Runners

153

8.2.6 Thermal Shutoff

153

8.2.7 System and Runner Pressures

153

8.2.8 Constant Pressure Gradient

154

8.2.9 Cold Slug Wells

154

8.2.10 Easy Ejection

155

8.3 Runner Types

155

8.3.1 Cold Runners

155

8.3.2 Hot Runner Systems

156

8.4 Runner Layout

157

8.4.1 Determining the Number of Cavities

157

8.4.2 Planning the Runner System Layout

159

8.4.3 Partially Balanced Runners

160

8.4.4 Geometrically Balanced Runners

162

8.5 Initial Runner Sizing

162

8.5.1 Determining Sprue Dimensions

162

8.5.2 Designing Runner Cross Sections

163

8.5.3 Determining Runner Diameters

166

8.6 Runner Balancing

168

8.6.1 How Runner Balancing Works

168

8.6.2 When Are the Runner Sizes Optimized?

168

8.6.3 Validating the Balance

168

8.6.4 Processing Window

169

8.7 Using Moldflow for Runner Balancing

170

8.7.1 Runner Balancing a 48-cavity Tool

170

8.7.2 Runner Balancing for a Family Mold

172

8.7.3 Runner Balancing for a Multigated Part

173

9 Cooling System Design

174

9.1 Mold Cooling System Overview

174

9.1.1 Importance of Cooling System Design

174

9.1.2 Mold Cooling System Components

175

9.2 Cooling-channel Configuration

177

9.2.1 Types of Cooling Channels

177

9.3 Alternative Cooling Devices

178

9.3.1 What Do They Do?

178

9.3.2 Baffles

179

9.3.3 Bubblers

180

9.3.4 Thermal Pins

180

9.3.5 Cooling Slender Cores

181

9.3.6 Cooling Large Cores

182

9.3.7 Cooling Cylinder Cores

183

9.4 Cooling System Equations

183

9.4.1 Cooling Time

183

9.4.2 Reynolds Number and Coolant Flow

184

9.5 Design Rules

184

9.5.1 Mold Cooling Design Considerations

184

9.5.2 Location and Size of Channels

185

9.5.3 Flow Rate and Heat Transfer

187

9.6 Using Moldflow for Cooling System Design

188

9.6.1 Example Setup

189

9.6.2 Cycle Time Determined by Design and Processing Parameters

190

10 Shrinkage and Warpage

194

10.1 Injection Molding and Shrinkage

194

10.1.1 What Are Shrinkage and Warpage?

194

10.1.2 Shrinkage and Machine Settings

194

10.1.3 Mold Filling and Packing

195

10.1.4 How Pressure and Time Affect Shrinkage

196

10.1.5 Thermally Unstable Flow

197

10.2 Basic Causes of Shrinkage and Warpage

198

10.2.1 Causes of Shrinkage

198

10.2.2 Causes of Warpage

202

10.2.3 Relating Orientation and Area Shrinkage to Warpage

203

10.3 Designing Accurate Parts Considering Warpage

204

10.3.1 Material Selection

205

10.3.2 Wall Thickness Variation

205

10.3.3 Gate Position and Runner Dimensions

206

10.3.4 Molding Conditions

208

10.3.5 Cooling Line Layout

211

11 Moldflow Design Procedure

212

11.1 Determine Analysis Objectives

212

11.2 Moldflow Analysis Steps Framework

213

11.2.1 The Whole Process

213

11.2.2 Optimize Fill

213

11.2.3 Balance and Size the Runners

218

11.2.4 Optimize Cooling

220

11.2.5 Optimize the Packing Profile

221

11.2.6 Optimize Warpage

222

11.3 Using Moldflow to Evaluate an Initial Design

226

11.3.1 Description of this Example

226

11.3.2 Molding Window

226

11.3.3 Filling Analysis

227

11.3.4 Gate and Runner Design

227

11.3.5 Cooling System Design

228

11.3.6 Packing Analysis

230

11.3.7 Warpage Analysis

230

11.4 Using Moldflow to Optimize the Design

231

11.4.1 Determine the Cause of Warpage

231

11.4.2 Investigating Different Gate Locations

231

11.4.3 Validating the Best Gate Location

232

12 Part Defects

236

12.1 Air Traps

236

12.1.1 What Is an Air Trap?

236

12.1.2 Problems Caused by Air Traps

237

12.1.3 Remedies

237

12.2 Black Specks and Black Streaks

238

12.2.1 What Are Black Specks and Black Streaks?

238

12.2.2 Causes of Black Specks and Black Streaks

238

12.2.3 Remedies

239

12.3 Brittleness

240

12.3.1 What Is Brittleness?

240

12.3.2 Causes of Brittleness

240

12.3.3 Remedies

240

12.4 Burn Marks

241

12.4.1 What Is a Burn Mark?

241

12.4.2 Causes of Burn Marks

242

12.4.3 Remedies

243

12.5 Delamination

243

12.5.1 What Is Delamination?

243

12.5.2 Causes of Delamination

244

12.5.3 Remedies

244

12.6 Dimensional Variation

245

12.6.1 What Is Dimensional Variation?

245

12.6.2 Causes of Dimensional Variation

245

12.6.3 Remedies

245

12.7 Discoloration

246

12.7.1 What Is Discoloration?

246

12.7.2 Causes of Discoloration

246

12.7.3 Remedies

247

12.8 Fish Eyes

248

12.8.1 What Are Fish Eyes?

248

12.8.2 Causes of Fish Eyes

248

12.8.3 Remedies

248

12.9 Flash

249

12.9.1 What Is Flash?

249

12.9.2 Causes of Flash

249

12.9.3 Remedies

250

12.10 Flow Marks

251

12.10.1 What Is A Flow Mark?

251

12.10.2 Causes of Flow Marks

251

12.10.3 Remedies

251

12.11 Hesitation

252

12.11.1 What Is Hesitation?

252

12.11.2 Problems Caused by Hesitation

252

12.11.3 Remedies

253

12.12 Jetting

253

12.12.1 What Is Jetting?

253

12.12.2 Problems Caused by Jetting

254

12.12.3 Remedies

254

12.13 Ripples

256

12.13.1 What Are Ripples?

256

12.13.2 Cause of Ripples

256

12.13.3 Remedies

257

12.14 Short Shots

257

12.14.1 What Is a Short Shot?

257

12.14.2 Causes of Short Shots

258

12.14.3 Remedies

258

12.15 Silver Streaks

259

12.15.1 What Are Silver Streaks?

259

12.15.2 Causes of Silver Streaks

260

12.15.3 Remedies

260

12.16 Sink Marks and Voids

261

12.16.1 What Are Sink Marks and Voids?

261

12.16.2 Causes of Sink Marks and Voids

261

12.16.3 Remedies

262

12.17 Weld Lines and Meld Lines

264

12.17.1 What Are Weld Lines and Meld Lines?

264

12.17.2 Problems Caused by Weld Lines

264

12.17.3 Strength of Weld Lines

265

12.17.4 Remedies

266

Appendix A: Injection Molding

268

A.1 Injection-molding Overview

268

A.1.1 Process

268

A.1.2 Applications

269

A.2 Development of the Injection-molding Machine

269

A.2.1 Benefits of the Reciprocating Screw

269

A.3 Development of the Injection-molding Process

270

A.4 Alternative Injection-molding Processes

270

A.4.1 Co-injection (Sandwich) Molding

270

A.4.2 Fusible Core Injection Molding

271

A.4.3 Gas-assisted Injection Molding

272

A.4.4 Injection-compression Molding

273

A.4.5 Lamellar (Microlayer) Injection Molding

274

A.4.6 Live-feed Injection Molding

274

A.4.7 Low-pressure Injection Molding

275

A.4.8 Push-pull Injection Molding

275

A.4.9 Reactive Molding

276

A.4.10 Structural Foam Injection Molding

277

A.4.11 Thin-wall Molding

277

Appendix B: Injection-molding Machine: System and Operations

280

B.1 Injection-molding Machine

280

B.1.1 Components

280

B.1.2 Machine Specification

281

B.1.3 Machine Function

281

B.1.4 Auxiliary Equipment

281

B.2 Machine Components

282

B.2.1 Injection System

282

B.2.2 Mold System

284

B.2.3 Hydraulic System

285

B.2.4 Control System

285

B.2.5 Clamping System

285

B.3 Molded System

286

B.3.1 The Delivery System

286

B.4 Machine Operating Sequence

287

B.4.1 Process Cycle

287

B.5 Screw Operation

289

B.5.1 Back Pressure

289

B.5.2 Injection Speed

289

B.5.3 Screw Rotation Speed

289

B.5.4 Cushion

290

B.6 Secondary Operations

290

B.6.1 Assembly

290

B.6.2 Decoration

290

B.6.3 Other Secondary Operations

291

Appendix C: Injection-molding Process Control

292

C.1 Importance of Process Conditions

292

C.1.1 Setting Machine Process Conditions

292

Appendix D: Plastic Materials

302

D.1 What Are Plastics?

302

D.1.1 Polymerization Process

302

D.1.2 Structure of Polymers

302

D.1.3 Polymer Alloys and Blends

304

D.1.4 Polymer Composites

304

D.2 Classification of Plastics

304

D.2.1 Classes of Plastics

305

D.2.2 Structures and Properties of Plastics

305

D.3 Thermoplastics

306

D.3.1 Market Share Distribution of Thermoplastics

306

D.3.2 Structures and Properties of Thermoplastics

307

D.3.3 Amorphous Polymers

307

D.3.4 Semicrystalline Polymers

308

D.4 Thermosets

309

D.5 Properties and Applications of Thermoplastics

310

D.5.1 ABS

311

D.5.2 PA 12

312

D.5.3 PA 6

314

D.5.4 PA 66

315

D.5.5 PBT

317

D.5.6 PC

318

D.5.7 PC/ABS

320

D.5.8 PC/PBT

321

D.5.9 HDPE

322

D.5.10 LDPE

324

D.5.11 PEI

325

D.5.12 PET

326

D.5.13 PETG

327

D.5.14 PMMA

328

D.5.15 POM

330

D.5.16 PP

331

D.5.17 PPE/PPO

333

D.5.18 PS

334

D.5.19 PVC

335

D.5.20 SAN

337

D.5.21 Additives, Fillers, and Reinforcements

338

D.5.22 Modifying Polymer Properties

339

D.5.23 Low-aspect Fillers

340

D.5.24 High-aspect Fillers: Fibers

340

Index

342

 

© 2009-2024 ciando GmbH