Injection Molding - Technology and Fundamentals

Musa R. Kamal, Avram I. Isayev

Injection Molding

Technology and Fundamentals

2012

950 Seiten

Format: PDF, Online Lesen

E-Book: €  239,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446433731

 

Preface

6

Part I: Background and Overview

26

1 Injection Molding: Introduction and General Background

28

1.1 Scope

28

1.2 Introduction

28

1.2.1 Polymer Processing

28

1.2.1.1 The Plastics Processing System

29

1.2.1.2 Processing Properties of Polymers and Their Compounds

30

1.2.2 Injection Molding

30

1.2.2.1 Introduction

30

1.2.2.2 General Injection Molding Process Sequence

31

1.3 Injection Molding Process Characteritics

34

1.3.1 The Plastication Stage

34

1.3.1.1 The Melting Zone

36

1.3.1.2 Temperature distribution in the nozzle

38

1.3.2 The Filling Stage

42

1.3.2.1 Flow Lines and Weld Lines

42

1.3.2.2 Jetting

44

1.3.2.3 Fountain Flow

45

1.3.3 Heat Transfer in the Cavity

49

1.3.3.1 Measurement of Temperature Distribution in the Cavity

49

1.3.3.2 Numerical Simulation of Heat Transfer in Injection Molding

53

1.3.3.3 Crystallization Kinetics

55

1.4 Microstructure of Injection Molded Parts

56

1.4.1 Crystallinity

57

1.4.1.1 Effect of Crystallinity and Orientation on Birefringence and Tensile Modulus

58

1.4.2 Morphology

61

1.4.3 Residual Stresses

65

1.4.3.1 Calculation of Residual Stresses

67

1.4.4 Microstructure of Fiber Reinforced Thermoplastics

71

1.4.4.1 Fiber Length and Concentration Distributions

71

1.4.4.2 Matrix Crystallinity

72

1.4.4.3 Fiber and Matrix Orientation

73

1.4.4.4 Composites Incorporating Conductive Fibers

76

1.4.5 Distribution of Cure in Thermosets

76

1.5 Properties of Injection Molding Compounds and Products

79

Symbol List

86

References

88

Part II: Injection Molding Machinery and Systems

96

2 Injection Molding Machines, Tools, and Processes

98

2.1 Injection Molding Machines

98

2.1.1 Types of Injection Molding Machines

98

2.1.1.1 Horizontal Injection Molding Machines

98

2.1.1.2 Vertical Injection Molding Machines

99

2.1.1.3 Hybrid Injection Molding Machine Composed of Vertical and Horizontal Units

100

2.1.2 Screw and Barrel Unit

100

2.1.2.1 In-Line Screw Type Injection Molding Machines

101

2.1.2.2 Screw Design for Injection Molding Machines

101

2.1.2.3 Barrels for Injection Molding Machines

102

2.1.3 Driving Principles

104

2.1.3.1 Hydraulic Injection Molding Machines

105

2.1.3.2 Electric Injection Molding Machines

105

2.1.3.2.1 Control Systems for an Electric Injection Molding Machine

106

2.1.3.2.2 Injection Mechanism for an Electric Machine

107

2.1.3.2.3 Nozzle Contact Mechanism for an Electric Injection Molding Machine

108

2.1.3.2.4 Electric Clamping Mechanism

108

2.1.3.2.5 Electric Ejection Mechanism

109

2.1.3.3 Man-Machine Interface and Communication Control

109

2.1.3.3.1 Man-Machine Interface for an Injection Molding Machine

109

2.1.3.3.2 Communication Control

111

2.1.4 Process Control

111

2.1.4.1 Control of the Filling Process

112

2.1.4.2 Control of the Hold-Pressure Switching Process

112

2.1.4.3 Control of the Hold-Pressure Process

113

2.1.4.4 Control of the Metering Process

114

2.1.4.5 Control of the Mold Opening/Closing Process

114

2.1.4.6 Temperature Control of Each Barrel And Nozzle

114

2.1.4.7 Control of the Injection Compression Process

114

2.2 Molds for Injection Molding

115

2.2.1 Functions of Mold Components

116

2.2.2 Classification of Molds

119

2.2.2.1 Cold Runner Mold Systems

119

2.2.2.1.1 2-Plate Molds

119

2.2.2.1.2 3-Plate Molds

119

2.2.2.2 Hot Runner Mold Systems

121

2.2.3 Sprue, Runners, and Gates

123

2.2.3.1 Runners

123

2.2.3.2 Gates

123

2.2.3.3 Gate Balance

127

2.2.3.4 Air Vents

128

2.2.4 Ejection Mechanisms

128

2.2.4.1 Ejector Pins

129

2.2.4.2 Sleeve and a Stripper Plate

129

2.2.4.3 Air Ejector

129

2.2.5 Mold Cooling

131

2.2.6 Temperature Control Methods and Mechanisms

131

2.2.6.1 Liquid Medium Control

131

2.2.6.2 Electric Heater Control

132

2.3 Injection Molding Processes

132

2.3.1 In-Mold Build-Up Injection Molding (DSI)

132

2.3.2 Conventional Processes

133

2.3.3 DSI Molding Process

133

2.3.3.1 Injection Welding Mechanism

133

2.3.3.2 Advantages of the DSI molding process

134

2.3.3.3 Product Examples of the DSI Molding Process

135

2.3.4 Multi-Material Injection Molding

136

2.3.4.1 Multi-Material Molding Techniques

136

2.3.4.2 Application Examples for the M-DSI Molding Process

139

2.3.5 Super-High Speed Injection Molding

140

2.3.5.1 Effects of High-Speed Injection

140

2.3.5.2 High-Speed Injection Molding Machines

141

2.3.5.3 Example of Ultra High-Speed Injection Molding

142

2.3.6 In-Mold Coating Injection Molding

142

2.3.6.1 Surface Decoration Techniques

142

2.3.6.2 Simultaneous Transfer Molding

143

2.3.7 Insert Injection Molding Process

145

2.3.7.1 Insert Molding Machines

146

2.3.8 Sandwich Injection Molding

147

2.3.8.1 Process Outline

147

2.3.8.2 Construction of Sandwich Nozzles

147

2.3.8.3 Features of Sandwich Molding

149

2.3.9 Plastic Magnet Injection Molding

150

2.3.9.1 Molding System and Magnetic Field Generating Methods

151

2.3.9.2 Important Issues with Injection Molding of Plastic Magnets

152

2.3.9.3 Key Points of Mold Design for Plastic Magnets

153

2.3.10 Long-Glass Fiber Reinforced Injection Molding

153

2.3.10.1 Long Fiber Reinforced Plastics Injection Molding

154

2.3.10.2 Properties of Long Glass Fiber (GF) Reinforced Plastics

154

2.3.10.3 Applications of Long-Fiber Molding to Large-Size Products

155

References

155

3 The Plasticating System for Injection Molding Machines

158

3.1 Introduction

158

3.2 The Plasticating System

159

3.3 Operation of Plasticating Screw Machines

161

3.3.1 Proper Operation

163

3.4 The Melting Process

163

3.5 Basic Screw Design

171

3.5.1 PS Injection Molding Case Study

172

3.6 High-Performance Screw Designs

173

3.7 Secondary Mixing Processes and Devices

179

3.7.1 Dynamic Mixers

186

3.8 Screw Design Issues Causing Resin Degradation

188

3.9 Non-Return Valve

190

Nomenclature

191

References

193

4 Non-Conventional Injection Molds

196

4.1 Introduction

196

4.2 Molds for Multi-Material Molding

198

4.2.1 Co-Injection

198

4.2.2 Overmolding

201

4.3 Injection Units, Layout, and Runner System

206

4.3.1 Equipment

206

4.3.2 Hot Runners

208

4.3.3 Material Interactions

208

4.4 Molds for Injection-Welding

209

4.5 Molds for Backmolding

211

4.5.1 Molding over Textiles or Fabrics

211

4.5.2 In-Mold Labeling

216

4.5.3 In-Mold Decoration

217

References

219

5 Gas Assisted Injection Molding

220

5.1 Introduction

220

5.1.1 Gas Assisted Injection Molding

220

5.1.2 Advantages and Limitations of GAIM

223

5.1.3 Materials for GAIM

224

5.2 Molding Equipment and Process

224

5.2.1 Gas Injection Unit and Injection Nozzle

224

5.2.2 Gas Injection into the Part

225

5.2.3 Gas Nozzle

227

5.2.4 Pressure Development during the Molding Process

227

5.2.5 Gas Penetration Behavior in Molded Parts

228

5.2.6 Gas Venting and Recycling

230

5.2.7 Moldability Diagram for GAIM

231

5.3 Process Modeling

232

5.4 Part/Mold Designs and Molding Guidelines

234

5.4.1 Gas Channel Geometry

234

5.4.2 Gas Channel Layout

236

5.4.3 Effect of Gravity

236

5.4.4 Residual Wall Thickness Distribution

237

5.4.5 Gas Dissolution into the Polymer

238

5.4.6 Gas Fingering

240

5.4.7 Unstable Gas Penetrations

241

5.4.8 Weld Lines Caused by the Flow-Lead Effect

242

5.4.9 Molding of Fiber Reinforced Materials

243

5.5 Concluding Remarks

245

List of symbols

245

References

246

6 Water Injection Techniques (WIT)

248

6.1 Introduction

248

6.2 Processing Technology

249

6.2.1 Course of Process

249

6.2.2 Process Variants

250

6.2.2.1 Short-Shot Process

251

6.2.2.2 Full-Shot Process

251

6.2.2.3 Full-Shot Process with Overspill

251

6.2.2.4 Melt Push Back Process

251

6.2.2.5 Core Pulling Process

252

6.2.2.6 Rinsing/Flushing Process

252

6.2.3 Comparison between GAIM and WIT

253

6.2.3.1 Limitations of GAIM

254

6.2.3.2 Cycle Times

254

6.2.3.3 Part Properties

255

6.2.3.3.1 Residual Wall Thicknesses (RWT)

255

6.2.3.3.2 Shrinkage/Warpage

257

6.2.3.3.3 Fluid-Sided Surface Qualities

257

6.2.3.3.4 Typical Part Defects

258

6.3 Plant and Injector Technology

259

6.3.1 Concepts and Operation Technology for Water Pressure Generating Units

259

6.3.2 Injector Technology for Water Injection Technique

262

6.3.2.1 Demands on WIT Injectors

262

6.3.3 Classification and Presentation of Different WIT-Injectors

264

6.3.3.1 Operating Method

264

6.3.3.2 Operating Direction

266

6.3.3.3 Alignment in the Mold

267

6.3.4 General Design Remarks for WIT Injectors

267

6.3.4.1 Excellent Process Reliability

268

6.3.4.2 Specific Controllability

268

6.4 WIT Compatible Part Design

268

6.4.1 Injector Embedding

268

6.4.2 General Design Guidelines for WIT Articles

269

6.4.3 Tubular Articles

270

6.4.3.1 Cross Sections

270

6.4.3.2 Aspect Ratio

271

6.4.3.3 Curves and Redirections

271

6.4.3.4 Change of Diameter

272

6.4.4 Compact Parts with Integrated Thick-Walled Sections

273

List of Abbreviations and Symbols

273

References

274

Part III: Injection Molding of Complex Materials

276

7 Flow Induced Fiber Micro-Structure in Injection Molding of Fiber Reinforced Materials

278

7.1 Introduction

278

7.2 Observations

279

7.2.1 Fiber Length Distribution

279

7.2.2 Fiber Concentration

280

7.2.3 Fiber Orientation

281

7.2.3.1 Orientation Mechanisms

281

7.2.3.2 Qualitative Observations

281

7.2.3.3 Quantification Tools: Orientation Distribution Function, Orientation Tensors

283

7.2.3.4 Experimental Methods

283

7.2.3.5 Results

285

7.3 Calculation of Fiber Orientation

286

7.3.1 Orientation Models

286

7.3.1.1 The Standard Model

286

7.3.1.2 Choice of the Interaction Coefficient and the Closure Approximation

288

7.3.1.2.1 Value of the Interaction Coefficient

288

7.3.1.2.2 The Closure Approximation Issue

289

7.3.1.3 Discussion of the Standard Model

290

7.3.1.4 Application to Injection Molding

290

7.3.2 Rheological Models

291

7.3.2.1 Overview on Rheological Measurements

291

7.3.2.2 Introduction to Behavior Laws

292

7.4 Conclusions

293

List of Symbols

294

References

295

8 Injection Foam Molding

298

8.1 Introduction

298

8.2 Injection Foam Molding Technologies: Background

299

8.2.1 Structural-Foam Molding

299

8.2.1.1 Low-Pressure Foam Molding

299

8.2.2 High-Pressure Foam Molding

300

8.2.2.1 Co-Injection Foam Molding

301

8.2.2.2 Gas Counter-Pressure Foam Molding

302

8.2.2.3 Sequential Injection Foam Molding

303

8.2.3 Microcellular Injection Foam Molding

304

8.2.3.1 Background on Microcellular Foam Processing

304

8.2.3.2 Development of Microcellular Injection Foam Molding

305

8.2.3.2.1 Batch Microcellular Processing

305

8.2.3.2.2 Semi-Continuous Microcellular Processing

306

8.2.3.2.3 Continuous Microcellular Processing

306

8.2.3.2.4 Microcellular Injection Foam Molding

307

8.3 Fundamentals of Foam Injection Molding

309

8.3.1 Foaming Additives

309

8.3.1.1 Cell-Nucleating Agents

309

8.3.1.2 Blowing Agents

310

8.3.1.2.1 Chemical Blowing Agents

310

8.3.1.2.2 Physical Blowing Agents

310

8.3.2 Thermophysical and Rheological Properties of Polymer/Gas Mixtures

310

8.3.2.1 Solubility and Diffusivity

310

8.3.2.1.1 Solubility

310

8.3.2.1.2 Diffusivity

313

8.3.2.2 Viscosity of Polymer/Gas Mixtures

314

8.3.2.3 Surface Tension of Polymer/Gas Mixtures

316

8.3.3 Formation of Foamable Compositions

316

8.3.3.1 Foamable Compositions in CBA Processing

316

8.3.3.2 Foamable Compositions in PBA Processing

317

8.3.3.3 Dissolution of Gas in Polymers

317

8.3.4 Cell Nucleation

318

8.3.4.1 Homogeneous and Heterogeneous Nucleation

318

8.3.4.1.1 Homogeneous Nucleation

318

8.3.4.1.2 Heterogeneous Nucleation

320

8.3.4.2 Nucleation and Pressure Profiles during Filling

320

8.3.5 Filling and Cell Growth

323

8.3.5.1 Geometric Singularity and Weld Lines

324

8.3.5.2 Void Fraction Control

324

8.3.5.3 Cell Growth in a Mold

324

8.4 Foam Molding Machines and Applications

325

8.4.1 Foam Molding Machines

325

8.4.2 Applications

327

8.5 Future Developments

327

List of Symbols and Abbreviation

328

References

329

9 Powder Metal Injection Molding

334

9.1 Opportunity

334

9.2 Process Overview

335

9.3 Feedstock

338

9.3.1 Powders

338

9.3.2 Binders

339

9.3.3 Compounds

341

9.4 Part and Tool Design

342

9.4.1 Part Design

342

9.4.2 Mold Design

344

9.5 Molding

347

9.5.1 Equipment

347

9.5.2 Operations

347

9.6 Debinding

348

9.7 Sintering

349

9.7.1 Fundamentals

349

9.7.2 Furnaces

354

9.7.3 Setters

357

9.8 Post Sintering Treatments

358

9.8.1 Heat Treatment

358

9.8.2 Hot Isostatic Pressing

360

9.8.3 Secondary Operations

360

9.9 Material Properties

361

List of Symbols

363

References

363

Acknowledgements

364

10 Micro Injection Molding

366

10.1 Introduction

366

10.2 Why Is Polymer Processing so Interesting for Microsystems Engineering?

367

10.3 The Process Specialties of Micro Injection Molding

368

10.3.1 Types of Micro Components

370

10.3.2 Machine Technology for Micro Injection Molding

371

10.3.3 Fabrication of Microstructured Mold Inserts For Micro Injection Molding

374

10.3.4 Special Types of Micro Injection Molding

375

10.3.5 Simulation

376

10.4 Micro Reaction Injection Molding

378

10.4.1 Reactive Resin Polymerization Methods

378

10.4.2 Thermally Initiated Reaction Injection Molding of LIGA-Structures

379

10.4.3 Development of Light Induced Reaction Molding (Photomolding) Techniques

381

10.4.4 UV-Embossing of Photocurable Systems

383

10.4.5 Photomolding of Composites

385

10.5 Micro Powder Injection Molding (MicroPIM)

387

10.5.1 Introduction to MicroPIM

387

10.5.2 Metal and Ceramic Powders for PIM

390

10.5.3 Commercially Available PIM Feedstocks and Binders

391

10.5.4 Binder Systems for MicroPIM

392

10.5.5 Compounding Feedstocks for MicroPIM

393

10.5.6 Rheology Measurements of PIM Feedstocks

394

10.5.7 Machinery for MicroPIM

396

10.5.8 Molding Tools for MicroPIM

396

10.5.9 Patterning Process for PIM Microparts

400

10.5.9.1 Debinding of MicroPIM Green Compacts

401

10.5.9.2 Sintering Process for MicroPIM Parts

403

10.5.10 MicroPIM Research

403

10.6 Two-Component Micro Injection Molding (2C-MicroPIM)

403

10.6.1 Machine Technology for Micro Two-Component Injection Molding

404

10.6.2 Mold Technology for Two-Component Micro Injection Molding

406

10.6.3 Contact-Strength for the Multi-Component Injection Molding

406

10.6.4 Sequence of the Two-Component Micro Injection Molding Process

407

10.6.5 Variothermal Mold Temperature Control for Two-Component Injection Molding

408

10.6.6 Applications of Multi-Component Injection Molding

409

10.6.6.1 Insert Injection Molding

409

10.6.6.2 Overmolding

409

10.6.6.3 In-Mold Assembly

410

10.6.6.4 3D-MID-Technology

410

10.6.6.5 Two-Component Powder Injection Molding

410

10.7 Summary and Outlook

411

List of Abbreviations

412

References

414

Part IV:Process Visualization, Control, Optimization, and Simulation

420

11 Internal Visualization of Mold Cavity and Heating Cylinder

422

11.1 Introduction

422

11.2 Dynamic Visualization Techniques for the Inside of the Mold Cavity

422

11.2.1 Overview of Dynamic Visualization Techniques

423

11.2.1.1 Light transmission method

423

11.2.1.2 Light Reflection Method

424

11.2.1.3 Light-Section Method

426

11.2.2 Glass-Inserted Mold (2D, 3D)

426

11.2.3 Back-Lighting Mold

431

11.2.4 Laser-Light-Sheet Mold

433

11.2.5 Runner-Exchanging System

436

11.2.6 Automatic Tracking System under High Magnifications

439

11.2.7 Visualization Technique for Ultra-High-Speed Injection Molding

441

11.3 Static Visualization Techniques for the Inside of a Mold Cavity

443

11.3.1 Overview of Static Visualization Techniques

443

11.3.1.1 Plugging of Colored Materials

443

11.3.1.2 Lamination of Colored Materials

444

11.3.2 Runner-Exchanging System and Gate-Magnetization Method

445

11.4 Visualization Heating Cylinder

449

11.4.1 Overview of Visualization Techniques for the Inside of a Heating Cylinder

450

11.4.2 Glass-Inserted Heating Cylinder

453

11.4.3 Visualization Unit inside Hopper Throat, Check-Ring, and Reservoir Areas

456

11.4.4 Image Processing Method for Laminated Slit Images

459

References

460

12 Injection Molding Control

464

12.1 Introduction

464

12.2 Basic Concepts and Elements of Control Systems

465

12.2.1 Basic Control System Structure

465

12.2.1.1 Open Loop System

466

12.2.1.2 Closed-Loop System

466

12.2.2 Basic Elements of Control Systems

467

12.2.2.1 Controlled Variables in Injection Molding

467

12.2.2.2 Actuators in Injection Molding

468

12.2.2.3 Measurement of Output Variables

469

12.2.2.4 The Controller

469

12.3 Control Applications

470

12.3.1 Machine Sequence Control

470

12.3.2 Adaptive Control

471

12.3.2.1 Dynamic Analysis of Injection Molding Process Variables

471

12.3.2.2 Adaptive Control Background

475

12.3.2.3 RLS Estimation

475

12.3.2.4 Pole Placement Design

476

12.3.2.5 Solving the Diophantine Equation

477

12.3.2.6 Direct Implementation of Adaptive Pole-Placement Control

479

12.3.2.7 Improvement I – Anti-Windup Estimation

479

12.3.2.8 Improvement II – Adaptive Feedforward Control

482

12.3.2.9 Improvement III – Cycle-To-Cycle Adaptation

484

12.3.2.10 Test of Different Conditions

485

12.3.2.11 Summary

486

12.3.3 Model Predictive Control

487

12.3.3.1 MPC Background

487

12.3.3.2 GPC Design for Injection Velocity

489

12.3.3.3 Step Response Comparison of GPC and Pole-Placement

490

12.3.3.4 Adaptive GPC Experiments with Different Conditions

490

12.3.3.5 Summary

492

12.3.4 Fuzzy Model Based Control [16]

493

12.3.4.1 Fuzzy Inference System

493

12.3.4.2 Fuzzy Multi-Model and Application to Injection Velocity

494

12.3.4.3 Fuzzy Multi-Model Predictive Control

499

12.3.4.4 On-Line Identification of Model Parameters of Rule Consequents

499

12.3.4.5 Batch Learning of Membership Function Parameters of Rule Premises

500

12.3.4.6 Experimental Test of Fuzzy Multi-Model Based Predictive Control

501

12.3.4.7 Summary

506

12.3.5 Iterative Learning Control [18]

506

12.3.5.1 Iterative Learning Control Background

507

12.3.5.2 P-Type Learning Control Algorithm

508

12.3.5.3 Optimal Iterative Learning Controller

510

12.3.5.4 Robust and Convergence Analysis

513

12.3.5.5 Selection of the Weighting Matrices

515

12.3.5.6 Injection Velocity Control with Optimal ILC

516

12.3.5.7 Summary

519

12.3.6 Statistical Process Monitoring of Injection Molding

519

12.3.7 Statistical Process Monitoring for Continuous Processes

519

12.3.8 Statistical Monitoring of Batch Processes

522

12.3.9 Stage-Based Statistical Monitoring of Injection Molding [61–63]

524

12.3.9.1 Fault #1: Material Disturbance

526

12.3.9.2 Fault #2: Check-Ring Failure

528

12.4 Control Perspective and Challenges for Injection Molding

529

12.4.1 Control Perspective

529

12.4.2 Major Challenges of Injection Molding Control

531

12.4.2.1 Implementation of Robust Control Algorithms

531

12.4.2.2 New Measurements

531

12.4.2.3 Comprehensive Quality Modeling

531

12.4.2.4 Closed-Loop Quality Control

532

12.4.2.5 Process and Control Performance Monitoring

532

References

532

13 Optimal Design for Injection Molding

536

13.1 Introduction

536

13.2 Basic Equations for the Mold Filling Problem

538

13.2.1 Mathematical Model: Hele-Shaw and Energy Equations

538

13.2.2 Boundary Conditions

539

13.2.3 Numerical Discretization

540

13.3 Optimization Techniques

541

13.3.1 Optimization Concept

541

13.3.2 Optimization Problems

541

13.3.3 Numerical Solution of Optimization Problems

542

13.3.3.1 Zero-Order Methods

543

13.3.3.2 First- and Second-Order Methods

544

13.3.3.3 Combination of Zero-Order and Gradient-Based Methods

545

13.4 Gradient-Based Methods and Sensitivity Analysis

546

13.4.1 Direct Sensitivity Equation Method

546

13.4.2 Adjoint Equation Method

547

13.4.3 Comparison of Solution Methods

549

13.4.4 Choice of a Method

549

13.5 Optimal Design for Injection Molding

550

13.5.1 Problem Parameters

550

13.5.2 Problem Definition

550

13.5.3 Direct Sensitivity of the State Equations

551

13.5.4 Sensitivity Formulation of the Objective Function

553

13.5.5 Parameterization of the Injection Pressure and Sensitivities

553

13.5.6 Sensitivities of the Function Constraints

555

13.5.7 Flow-Front Tracking and Sensitivities

555

13.5.8 Parameterization of the Flow Domain and Sensitivities

556

13.6 Algorithm

559

13.7 Illustrative Applications

559

13.7.1 Automotive Part: Single Gate Optimization

559

13.7.2 Automotive Lens: Multiple Gate Optimization

566

13.7.3 Multiple Gate Optimization: More than One Optimal Solution

570

13.8 Conclusions

572

List of Symbols and Abbreviations

572

References

574

14 Development of Injection Molding Simulation

578

14.1 Introduction

578

14.2 The Molding Process

578

14.3 The Problem

579

14.3.1 Basic Physics of the Process

580

14.3.2 Material Properties

580

14.3.3 Geometric Complexity of Mold and Part

581

14.3.4 Process Stability

581

14.4 Why Simulate Injection Molding?

581

14.5 Early Academic Work on Simulation

582

14.5.1 Boundary Conditions and Solidification

583

14.6 Early Commercial Simulation

584

14.7 Simulation in the 1980s

586

14.8 Academic Work in the 1980s

587

14.8.1 Mold Filling

587

14.8.2 Mold Cooling

590

14.8.3 Warpage Analysis

590

14.8.4 Fiber Orientation

591

14.9 Commercial Simulation in the 1980s

593

14.9.1 Codes Developed by Large Industrials and not for Sale

595

14.9.1.1 General Electric

595

14.9.1.2 Philips/Technical University of Eindhoven

595

14.9.2 Codes developed by Large Industrials for Sale in the Marketplace

596

14.9.2.1 SDRC

596

14.9.2.2 GRAFTEK

596

14.9.3 Companies Devoted to Developing and Selling Simulation Codes

596

14.9.3.1 AC Technology

596

14.9.3.2 Moldflow

597

14.9.3.3 Simcon Kunststofftechnische Software GmbH

598

14.10 Simulation in the 1990s

598

14.11 Academic Work in the 1990s

599

14.12 Commercial Developments in the 1990s

600

14.12.1 SDRC

600

14.12.2 Moldflow

601

14.12.3 AC Technology/C-MOLD

605

14.12.4 Simcon

605

14.12.5 Sigma Engineering

605

14.12.6 Timon

606

14.12.7 Transvalor

606

14.12.8 CoreTech Systems

606

14.13 Simulation Science since 2000

607

14.14 Commercial Developments since 2000

609

14.14.1 Moldflow

609

14.14.2 Timon

610

14.14.3 Core Tech Systems

611

14.15 The Simulation Market Today

611

14.16 Conclusion

612

14.17 Appendix: 2.5D Analysis

612

14.17.1 Material Properties

613

14.17.2 Geometric Considerations

614

14.17.3 Simplification by Mathematical Analysis

615

14.18 Acknowledgments

617

References

617

15 Three-Dimensional Injection Molding Simulation

624

15.1 Introduction

624

15.1.1 Process Background

624

15.1.2 Historical Background on 3D Simulation

625

15.1.3 General Numerical Techniques for 3D Injection Molding Simulation

627

15.1.3.1 Constitutive Equations

627

15.1.3.2 Boundary Conditions

630

15.1.4 Numerical Issues in 3D Injection Molding

631

15.2 Temperature Independent Flows and Finite Element Techniques

632

15.2.1 Generalized Stokes Problem

632

15.2.1.1 Mixed Finite Elements for Newtonian Flows

632

15.2.1.2 More General Viscous Resolution

636

15.2.2 Extension to Weakly Isothermal Compressible Flows

637

15.2.3 Extension to Navier and Stokes Equations

639

15.2.4 Extension to Viscoelastic Flows

641

15.2.4.1 Viscoelasticity and Constitutive Models

642

15.2.4.2 Flow Determination for Viscoelastic Materials

643

15.3 Free Surface Determination

647

15.3.1 Techniques to Determine the Interface

647

15.3.2 The VOF (Volume of Fluid Method)

648

15.3.2.1 Resolution of the Transport Equation

648

15.3.2.2 Advantages and Disadvantages of the VOF Method

650

15.3.3 The Level Set Method

652

15.3.3.1 Mathematical Considerations

652

15.3.3.2 Resolution of the Transport Equation

653

15.3.3.3 Advantages and Disadvantages of the Level Set Method

653

15.4 Thermomechanical Coupling

655

15.4.1 Material Properties Coupling

655

15.4.2 The Temperature Balance Equation

657

15.4.3 Numerical Solution

657

15.5 Advanced Computational Techniques

659

15.5.1 Meshing

659

15.5.1.1 Generation and Anisotropic Adaptation of Static Interfaces

659

15.5.1.2 Multidomain and Interface Capturing

661

15.5.2 Parallel Computing

662

15.5.3 Application to Filling Simulation with Mold Coupling

664

15.6 Application to a 3D Part

666

15.7 Conclusion

669

Acknowledgements

670

Appendixes

670

Appendix 15.1: Viscosity Equations

670

Appendix 15.2: Tait Equation Parameters

671

Notations

672

References

675

16 Viscoelastic Instabilities in Injection Molding

678

16.1 Introduction

678

16.2 Background, Literature Review

679

16.3 Experimental Motivation

681

16.4 Analysis

683

16.5 Numerical Modelling: Governing Equations

685

16.6 Numerical Modelling: Finite Element Analysis

687

16.7 Domain Perturbation Technique

693

16.8 Results

697

16.8.1 Steady State Results

698

16.8.2 Stability Results

702

16.9 Discussion

703

Symbols and Notation

705

References

707

Part V: Microstructure Development, Characterization, and Prediction

710

17 Evolution of Structural Hierarchy in Injection Molded Semicrystalline Polymers

712

17.1 Introduction

712

17.2 Fundamentals of the Injection Molding Process

713

17.2.1 Experiences of Polymer Chains in a Typical Injection Molding Machine

713

17.2.2 Flow Behavior into Injection Molding Cavities

714

17.3 Structure Development in Injection Molded Fast Crystallizing Polymers

718

17.3.1 Polyethylene (PE)

718

17.3.2 Polypropylene (PP)

719

17.3.3 Polyoxymethylene (POM) and Other Fast Crystallizing Polymers

721

17.3.4 Injection Molded PVDF and its Blends with PMMA

721

17.3.5 Polyamides (PA)

727

17.3.6 Effect of Platelet Type Nanoparticles in Injection Molding

728

17.3.7 Influence of Nano Clay on the Crystallization and Orientation – Summary

733

17.3.8 Structure Development in Thermotropic Liquid Crystalline Polymers

733

17.4 Structure Development in Injection Molded Slowly Crystallizing Polymers

734

17.4.1 General Characteristics of Structure Development in Slow Crystallizing Polymers

735

17.4.2 Poly(Phyenylene Sulfide) (PPS)

735

17.4.3 Effect of Molecular Weight

738

17.4.4 Poly(Ether Ether Ketone) PEEK

741

17.4.5 Syndiotactic Polystyrene (s-PS)

744

17.4.6 Polyethylene Naphthalate (PEN)

746

17.4.7 Structure Characteristics of Injection Molded Slowly Crystallizing Polymers – Summary

747

17.5 Simulation of the Structure Development During Injection Molding Process

747

17.6 General Summary

750

Abbreviations

751

References

752

18 Modeling Aspects of Post-Filling Steps in.Injection Molding

756

18.1 Introduction

756

18.1.1 The Post-Filling Stages

757

18.1.2 State of the Art on Post-Filling Modeling

757

18.1.3 Outline

760

18.2 Understanding Pressure Evolution

761

18.2.1 The Evolution of Pressure Curves During Injection Molding

761

18.2.1.1 The Filling Stage

761

18.2.1.2 The Packing-Holding Stage

762

18.2.1.3 The Cooling Stage

765

18.2.2 Pressure Curves Inside the Runners During Cooling

769

18.3 A Suitable Modeling of the Process

769

18.3.1 Modeling the Packing – Holding Stage

771

18.3.2 Modeling the Cooling Stage

772

18.3.3 Time-Depending Heat Transfer Coefficient

772

18.4 Relevant Aspects of Rheological Behavior

776

18.4.1 The Effect of Pressure on Viscosity

776

18.5 Mold Deformation

778

18.5.1 Effect of Mold Deformation on the Packing Stage

779

18.5.2 Effect of Mold Deformation on the Cooling Stage

779

18.5.3 Effect of Mold Deformation on Pressure Evolution and on Gate Sealing Time

780

18.6 Molecular Orientation

781

18.6.1 Experimental Evidences

782

18.6.2 Modeling the Evolution of Orientation

785

18.6.2.1 Leonov Model

786

18.6.2.2 Non-Linear Maxwell Model

786

18.6.3 Results of Modeling for Amorphous Materials

787

18.7 Semi-Crystalline Polymers

791

18.7.1 Effect of Crystallinity on Material Properties

792

18.7.1.1 Effect of Crystallinity on Rheology

792

18.7.1.2 Effect of Crystallinity on Specific Volume

794

18.8 Morphology Evolution During the Post-Filling Stages

795

18.9 Concluding Remarks

798

Nomenclature

799

References

801

19 Volumetric and Anisotropic Shrinkage in.Injection Moldings of Thermoplastics

804

19.1 Introduction

804

19.2 Theoretical Analysis

805

19.2.1 Volumetric Shrinkage

805

19.2.2 Anisotropic Shrinkage

807

19.3 Comparison Between Simulations and Experiments

814

19.3.1 Volumetric Shrinkage

814

19.3.2 Anisotropic Shrinkage

818

19.4 Conclusions

829

19.5 Acknowledgement

830

Nomenclature

830

References

832

20 Three-Dimensional Simulation of Gas-Assisted and Co-Injection Molding Processes

834

20.1 Introduction

834

20.2 Background

836

20.3 Mathematical Modeling and Formulations

837

20.3.1 Conservation of Mass and Momentum

838

20.3.2 Conservation of Energy

839

20.3.3 Boundary and Initial Conditions

839

20.3.4 The Compressibility Effects

840

20.4 Front Capturing Methods for Co-Injection Molding

840

20.4.1 The VOF and phase field methods

841

20.4.2 The Level-Set Method

842

20.4.3 Use of Level-Set in Co-Injection Molding

843

20.5 Numerical Implementation

843

20.5.1 A Finite Element Method

843

20.5.1.1 Momentum-Continuity Equations

844

20.5.1.2 Energy Equation

844

20.5.1.3 Level-Set Equation

846

20.5.2 Solution Algorithm

847

20.6 Validation Cases and Applications

848

20.6.1 Gas-Assisted Injection Molding

849

20.6.1.1 Gas-Assisted Injection of a Plate with a Flow Channel

849

20.6.1.2 Secondary Penetration in Gas-Assisted Injection

853

20.6.1.3 Gas-Assisted Injection of a Thick Part

854

20.6.2 Co-Injection Molding

855

20.6.2.1 Co-Injection of a Side Gated Rectangular Plate

855

20.6.2.2 Co-Injection of a Center-Gated Rectangular Plate

858

20.6.2.3 Co-Injection of a C-Shaped Plate

862

20.6.3 Simulation of Breakthrough in Co-Injection Molding

863

20.7 Conclusions

870

List of Symbols and Abbreviations

871

References

873

21 Co-Injection Molding of Polymers

876

21.1 Introduction

876

21.2 Technology

878

21.3 Experimental Studies

885

21.3.1 Effect of Process Parameters on Skin-Core Structure

885

21.3.2 Breakthrough Phenomenon

892

21.3.3 Interfacial Instability

899

21.3.4 Mechanical Properties

900

21.3.5 Microstructure

906

21.3.6 Biomedical Applications

909

21.4 Modeling of the Co-Injection Molding Process

909

21.4.1 Simulation Approaches

909

21.4.2 Comparison between Simulation and Experiment

923

21.5 Conclusions

934

Nomenclature

934

References

937

Subject Index

942

 

© 2009-2024 ciando GmbH