Mixing and Compounding of Polymers - Theory and Practice

Ica Manas-Zloczower

Mixing and Compounding of Polymers

Theory and Practice

2012

1182 Seiten

Format: PDF, Online Lesen

E-Book: €  239,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446433717

 

Foreword

8

Contents

10

Part I: Mechanisms and Theory

26

1 Basic Concepts

28

2 Mixing of Miscible Liquids

30

2.1 Introduction

30

2.2 Continuum Analysis of Stretching

33

2.2.1 Deformation Analysis

33

2.2.2 Rate Analysis

38

2.2.3 Interface Stretching in Simple Flows

41

2.2.3.1 Simple Shear: Deformation Analysis

41

2.2.3.2 Simple Shear: Rate Analysis

42

2.2.3.3 Planar Elongation: Deformation Analysis

43

2.2.3.4 Planar Elongation: Rate Analysis

44

2.2.4 Stretching Behavior and Mixing Flows

45

2.3 Chaos and Chaotic Flows

46

2.3.1 An Example Flow

46

2.3.2 Poincaré Sections

47

2.3.3 Lyapunov Exponents

50

2.3.4 Periodic Points

53

2.4 Mixing in Chaotic Flows

54

2.4.1 Global Chaos

54

2.4.2 Universal Stretching Properties

55

2.4.2.1 Growth of Average Stretch

56

2.4.2.2 Global Stretching Distribution

57

2.4.2.3 Spatial Distribution of Stretch

59

2.4.2.4 Implications for Flow Selection

59

2.5 Other Considerations

61

2.5.1 Rheological Effects

61

2.5.2 Molecular Diffusion

61

2.6 Summary

62

Acknowledgements

63

References

63

3 Mixing of Immiscible Liquids

66

3.1 Introduction

67

3.2 Mixing Mechanisms

68

3.3 Distributive Mixing (Ca >> Cacrit)

71

3.3.1 Affine Deformation

71

3.3.2 Efficient Mixing: Stretching, Folding, and Reorienting

73

3.3.3 Static Mixers

75

3.3.3.1 Multiflux

76

3.3.3.2 Ross

78

3.3.3.3 Sulzer

79

3.3.3.4 Kenics

81

3.3.4 Optimization Kenics Mixers

82

3.3.4.1 Optimizing RL Designs

82

3.3.4.2 Optimizing for Non-Newtonian Fluids

83

3.3.4.3 Optimizing RR Designs

85

3.3.4.4 Scale-up: Use of Structure Radius and Scale of Segregation

86

3.3.4.5 Mapping the Structure

88

3.3.4.6 Conclusions

91

3.3.5 Dynamic Mixers

91

3.3.5.1 Co-Rotating Twin-Screw Extruders

91

3.3.5.2 Single Screw Extruders

94

3.3.5.3 The Rotational Arc Mixer (RAM)

96

3.3.6 Understanding Mixing: the Lid-Driven Cavity Flow

96

3.3.6.1 Geometry

96

3.3.6.2 Periodic Points

97

3.3.6.3 The Mapping Method

101

3.3.6.4 Accuracy of the Mapping Method

102

3.3.6.5 Optimization by Using the Mapping Method

103

3.3.6.6 Adding Inertia

109

3.3.6.7 3-D Cavity

111

3.4 Dispersive Mixing Ca ˜ Cacrit

115

3.4.1 Rayleigh Disturbances

115

3.4.2 Disintegration of Threads at Rest

117

3.4.3 Disintegration of Threads During Flow

121

3.4.4 Flow Classification

123

3.4.5 Drop Deformation and Breakup

127

3.4.6 Step-Wise Equilibrium versus Dynamic Breakup

133

3.4.6.1 Two Mechanisms

133

3.4.6.2 Plane Hyperbolic Flow

134

3.4.6.3 Simple Shear Flow

135

3.4.7 Theoretical Models for Drop Evolution

139

3.5 Coalescence and Influence of Surfactants

149

3.5.1 Collision of Drops

149

3.5.2 Film Drainage

150

3.5.2.1 Theoretical

150

3.5.2.2 Restrictions of the Drainage Models

154

3.5.2.2 Drainage Probability

155

3.5.2.3 Experimental

157

3.5.3 Coalescence Probability

158

3.5.4 Combination of Breakup and Coalescence

160

3.5.5 Influence of Surfactants on Deformation

163

3.5.5.1 Surface Tension Gradients

164

3.5.5.2 Equation of State

165

3.5.5.3 Drop Shapes

165

3.5.5.4 Modes of Drop Breakage

165

3.5.6 Influence of Surfactants on Coalescence

172

3.6 Polymer Blending in Practice

172

3.6.1 A Two-Zone Model

172

3.6.1.1 Principle

172

3.6.1.2 Numerical Approach

173

3.6.1.3 Effective Viscosity

174

3.6.1.4 Results

175

3.6.1.5 Influence of Material Parameters

177

3.6.1.6 Influence of Processing Conditions

178

3.6.2 Passage through a Die

180

3.6.3 Phase Inversion

181

3.6.4 Journal Bearing: a Second Model Flow

183

3.6.5 Dynamics of Mixing

184

3.7 Rheology and Morphology

185

3.7.1 Constitutive Modeling of Dispersive Mixtures

185

3.7.2 Diffuse Interface Modeling

190

3.8 Conclusions

195

APPENDIX 3.A: Determination of Interfacial Tension

197

Nomenclature

199

References

202

4 Dispersive Mixing of Solid Additives

208

4.1 Introduction

208

4.2 Continuum Dispersion Models

210

4.2.1 Agglomerate Structure and Cohesiveness

210

4.2.2 Models for Agglomerate Dispersion

212

4.3 Discrete Dispersion Models

224

4.4 Dispersion Mechanisms and Modelling Based on Experimental Observations

228

4.5 Concluding Remarks

235

Nomenclature

236

References

239

5 A Kinematic Approach to Distributive Mixing

242

5.1 Introduction

242

5.2 Kinematic Approach to Distributive Mixing

243

5.3 Application to Simple Flow Configurations

245

5.3.1 Simple Shear Flow

245

5.3.2 Pure Elongational Flow

246

5.4 Application to a Two-Dimensional Flow Configuration

248

5.5 Experimental Study of a Two-Dimensional, Nonstationary Flow

252

5.6 Application to Three-Dimensional Flow Configurations

255

5.6.1 Periodic Shearing Flow

255

5.6.2 Non-Stationary Flow within an Internal Mixer

258

5.7 Discussion

260

Nomenclature

263

References

264

6 Number of Passage Distribution Functions

266

6.1 Introduction

266

6.2 Theory of Number of Passage Distribution (NPD) Functions

267

6.3 NPD Functions in Batch and Flow Recirculating Systems

268

6.4 NPD Functions in Some Model Systems

270

6.4.1 Well-Stirred Batch Vessel with Recirculation

270

6.4.2 Plug Flow with Recirculation

271

6.4.3 Well-Stirred Continuous Mixing Vessel with Recirculation

272

6.5 Applications of NPD Functions to Dispersive Mixing

273

6.5.1 Dispersive Mixing

273

6.5.2 Modeling of Mixers

274

Acknowledgment

274

References

275

7 Mixing Measures

276

7.1 Introduction

276

7.2 Entropic Measures

278

7.2.1 Shannon Entropy

278

7.2.2 Renyi Entropies

278

7.2.2.1 Applications

279

7.2.3 Multi-Component Shannon Entropy

281

7.2.3.1 Application: Simultaneous Dispersive and Distributive Mixing Index

283

7.2.4 Modified Multi-Component Shannon Entropy

284

7.2.4.1 Applications to Extruders

285

7.2.4.2 Applications to Micromixers

287

7.2.5 Renyi Generalized Entropies and Fractal Properties

288

7.2.5.1 Applications

288

7.3 Summary

289

References

290

Part II: Mixing Equipment – Modeling, Simulation, Visualization

292

8 Flow Field Analysis of a Banbury Mixer

294

8.1 Introduction

294

8.2 Flow Simulations

297

8.2.1 Description of Method

297

8.2.2 Velocity Profiles and Pressure Distributions

299

8.3 Flow Field Characterization

303

8.3.1 Dispersive Mixing

303

8.3.2 Distributive Mixing

309

8.4 Summary and Conclusions

320

Nomenclature

320

References

321

9 CFD Simulations of Static Mixers: A Survey

324

9.1 Static Mixers in the Polymer Industry

324

9.2 Performance Criteria

326

9.2.1 Pressure Drop

327

9.2.2 Shearing Action

328

9.2.3 Mixing Performance

329

9.2.4 Mixing Homogeneity

331

9.2.5 CFD Methods

332

9.3 Numerical Modelling Principles

334

9.3.1 Simulation Flowchart

334

9.3.2 Equations of Change

335

9.3.3 Discretization

336

9.3.4 Solvers

338

9.3.5 Particle Tracking

339

9.4 Summary of the Main Hydrodynamic Predictions

341

9.4.1 Pressure Drop

341

9.4.2 Poincaré Maps

343

9.4.3 Residence Time Distribution

343

9.4.4 Overall Deformation and Shear

344

9.4.5 Transverse Flow

345

9.5 Summary of the Main Results on Mixing Evaluation

346

9.5.1 Segregation Scale

346

9.5.2 Intensity of Segregation

347

9.5.3 Chaos Theory

348

9.6 Mixer Performance Comparison

349

9.7 Other Mixing Evaluation Studies

351

9.8 Simulation Methods, Software Tools

351

9.9 Industrial Perspective and what the Future Holds

354

9.9.1 Single Phase Fluids

354

9.9.2 Multiphase Fluids

354

9.9.3 Multi-Scale Modeling

355

Nomenclature

356

References

358

10 Flow Visualization in Internal Mixers

362

10.1 Introduction

362

10.2 Historical Development of Internal Mixers

364

10.3 Flow Visualization

367

10.3.1 Flow Visualization by Various Sensors

370

10.3.2 Flow Visualization through Transparent Windows

376

References

384

11 Continuous Equipment Simulation – Single Screw

388

11.1 Introduction

388

11.2 General Equations for the Creeping Flows of Generalized-Newtonian Fluids

389

11.3 Geometrical Considerations and Approximations

392

11.4 Overview of Previous Work

394

11.5 Description of Applied Modeling Approaches

396

11.5.1 Two-Dimensional Formulation

396

11.5.2 Three-Dimensional Formulation

398

11.6 Predicted Results

401

11.6.1 Isothermal Flow of a Newtonian Fluid

401

11.6.2 Isothermal Flow of a Power-Law Non-Newtonian Fluid

402

11.6.3 Non-Isothermal Flow of Non-Newtonian Fluids

405

Nomenclature

410

References

412

12 Modeling Flow in Twin Screw Extrusion

414

12.1 Introduction

414

12.2 Modular Self-Wiping Co-Rotating Twin Screw Extruders

416

12.2.1 Technology

416

12.2.2 Flow in Individual Elements

417

12.2.3 Heat Balance

421

12.2.4 Melting

422

12.2.5 Composite Modular Machine Behavior

423

12.2.6 Global Machine Software

424

12.3 Tangential Counter-Rotating Twin Screw Extruders

425

12.3.1 Technology

425

12.3.2 Flow in Individual Elements

425

12.3.3 Heat Balance

429

12.3.4 Composite Modular Machine Behavior

430

12.4 Intermeshing Counter-Rotating Twin Screw Extruders

431

12.4.1 Technology

431

12.4.2 Flow in Individual Elements

433

12.4.3 Melting

434

12.4.4 Composite Modular Machine Behavior

434

12.5 Continuous Mixers

435

12.5.1 Technology

435

12.5.2 Flow Modeling

438

References

439

13 Continuous Equipment Simulation – Co-Kneader

444

13.1 Introduction

444

13.2 Machine Geometry and Working Principle

446

13.2.1 Screw Elements, Pins, and Barrel Liners

446

13.2.2 Melting

449

13.3 Modeling the Co-Kneader

451

13.4 Newtonian, Isothermal Analysis of Continuous Mixers

452

13.4.1 Twin-Screw Extruders

452

13.4.2 The Co-Kneader

456

13.5 Mixing

459

13.6 Experimental

460

13.6.1 Throughput versus Pressure Characteristic

462

13.6.2 Filled Length

465

13.6.3 Pressure Gradients

466

13.6.4 Residence Time Distribution

468

13.7 Nonisothermal, Non-Newtonian Analysis

470

13.8 Outlook

470

Nomenclature

472

References

473

14 Continuous Equipment Simulation – Mixing Devices

476

14.1 Static Mixers

477

14.2 Mixing Heads in Single Screw Extrusion

489

14.3 Conclusions

495

References

495

15 Continuous Process Visualization: Visual Observation, On-Line Monitoring, Model-Fluid Extrusion and Simulation

498

15.1 Introduction

498

15.1.1 Overview

500

15.2 Techniques for Visualization of Polymer Extrusion and Compounding

504

15.2.1 Experimental Simulation with a Simple Mixer and Real Material

504

15.2.1.1 Melting of Polymer Pellets

504

15.2.1.2 Melting of Polymer Powders

509

15.2.1.3 Melting of Polymer Blends

509

15.2.1.4 Melting of Polymer/Rubber Blends

512

15.2.1.5 Visualization of Morphological Transformations during Mixed Melting: the Phase Inversion Phenomenon

514

15.2.1.6 Visualization of Morphological Transformations during Mixed Melting: Direct Observation and Torque Monitoring of Miscible Blends with Extremely Low Viscosity Ratio (= 0.01)

516

15.2.2 Model Fluid Extrusion: Real Mixer with a Simple Fluid

517

15.2.2.1 Visualization of Flow in Extruders using Model Fluids

518

15.2.2.2 Visualization of Glass Fiber Dispersion in a Model Fluid

520

15.2.3 Processing with Continuous Equipment and Real Polymers

521

15.2.3.1 Visualization of the Extrudate at the Die Exit

521

15.2.3.2 Visualization of Fluid Flows in a Fixed Geometry

522

15.2.3.3 In-Line Sampling

525

15.2.3.4 On-Line Microscopy

525

15.2.3.5 Point Measurements: Characterization of Melting and Mixing Time with the Residence Time Distribution

529

15.2.3.6 Visualization of Solid Transport and the Onset of Melting by Direct Observation

539

15.2.3.7 Visualization of the Melting Zone by Direct Observation

541

15.2.3.8 Visualization and On-line Monitoring using Highly-Instrumented Extruders

545

15.2.3.9 Visualization of the Melting of Polymer Blends

556

15.2.3.10 Visualization of Phase Inversion during Polymer Blending

559

15.2.3.11 Visualization of Mixing of Polymer Pellets with Mineral Filler

560

15.2.3.12 Characterization of Energy Dissipation in the Melting Zone: Pulse Perturbation Method and Dynamic Monitoring

560

15.2.3.13 Characterization of the Twin Screw Extrusion Process from the Steady-State

567

15.3 Compounding Principles and Practical Examples

572

15.3.1 Melting Zone Extrusion and Mixing

572

15.3.1.1 Melting of Polymer/Polymer Blends

573

15.3.1.2 Melting of Polymer/Filler Blends

576

15.3.2 Mixing after Melting

577

15.3.3 Dispersive Mixing with Phase Inversion

579

15.3.3.1 Mixing of Plastic/Rubber Blends with High Viscosity Ratio (> 3.5)

579

15.3.3.2 Mixing of Plastic/Rubber Blends with Low Viscosity Ratio (< 0.28)

579

15.3.3.3 Mixing of Plastic/Rubber Blends with Extremely Low Viscosity Ratio (<< 0.1)

580

15.3.3.4 Mixing of Plastic/Rubber Blends: Blending with in situ Grafting

581

15.3.4 Melting and Mixing Dynamics in Extrusion

581

15.3.5 Unstable Flow during Single Screw Extrusion

584

15.3.6 Unstable Flow during Twin Screw Extrusion

587

15.3.7 Visualization and Monitoring Applied to Process Control

590

15.4 Summary

594

15.5 Concluding Remarks

596

References

597

16 Scale-Up of Mixing Equipment

602

16.1 Similarity

602

16.2 Systems

603

16.3 Dimensionless Groups

604

16.3.1 Global Treatment

604

16.3.2 Zone-Based Treatment

607

16.3.2.1 Melt Conveying Section

607

16.3.2.2 Melting Sections

610

16.3.2.2.1 Compact Solid Bed

610

16.3.2.2.2 Dispersive Melting

612

16.3.2.3 Solid Conveying Sections

613

16.3.2.4 Mixing in Melt Conveying Sections

616

16.3.2.4.1 Miscible Melts

616

16.3.2.4.2 Immiscible Melts

616

16.3.2.4.3 Solid/Melt Systems

617

16.4 Scale-Up, Scale-Down Rules

621

16.4.1 Continuous, Steady-State Processes

621

16.4.1.1 Melt Extruder and Melt-Dominated Smooth-Barrel Plasticizing Extruder

624

16.4.1.1.1 Identical Melt Output Temperatures and Identical Temperature Profiles over the Dimensionless Extruder Length

624

16.4.1.1.2 Different Temperatures for the Model and Main Machine

632

16.4.1.2 Rubber Extruder

635

16.4.1.3 Grooved Barrel Extruder

637

16.4.1.4 Co-Rotating Twin Screw Extruder

637

16.4.1.5 Counter Rotating Twin Screw Extruder

647

16.4.1.6 Non-Intermeshing Counter Rotating Twin Screw Kneader

648

16.4.1.7 Buss Kneader

651

16.4.1.8 Mixing Rolls

654

16.4.1.9 Mixing Elements

654

16.4.2 Discontinuous Processes

656

16.4.2.1 Internal Mixers

656

16.4.2.2 Mechanically Agitated Vessels

661

References

665

17 Scale-Down of Mixing Equipment: Microfluidics

670

17.1 Introduction

670

17.2 Mixing at Small Scales: Dimensionless Groups

671

17.3 Distributive Mixing at Small Scales

674

17.3.1 Passive versus Active Actuation

675

17.3.2 Passive Mixers: Design Options

676

17.3.3 Staggered Herringbone Mixer

676

17.3.4 Barrier-Embedded Static Mixers

684

17.3.5 Serpentine Channels

689

17.4 Active Mixers: Design Options

690

17.4.1 Neutral Beads

690

17.4.2 Magnetic Beads

695

17.4.3 Coupled Electrostatics and Hydrodynamics

698

17.4.4 Artificial Cilia

703

17.5 Dispersive Mixing at Small Scales

709

17.5.1 Experimental Observations

710

17.5.2 Boundary Integral Simulations

713

17.5.3 Small Deformation Theory

719

17.6 Conclusions

720

References

722

Part III: Compounding

726

18 Compounding (Theory and Practice)

728

18.1 Introduction

728

18.2 Types and Characteristics of Compounds

728

18.2.1 Polymer Blends

729

18.2.2 Polymer Formulations

730

18.2.3 Filled Polymers (Polymer Composites)

731

18.3 Compounding Practice

734

18.3.1 General

734

18.3.2 Polymer Blends and Polymer Formulations

735

18.3.3 Filled Polymers

737

18.3.3.1 Setting Up a Compounding Line

737

18.3.3.2 Low Aspect Ratio Fillers

740

18.3.3.3 High Aspect Ratio Fillers

742

18.3.3.4 Nanoclays

743

18.4 Concluding Remarks

744

Abbreviations

745

References

746

19 Solid Additives

748

19.1 Introduction

748

19.2 Synthesis and Chemical Properties of Amorphous Silica

750

19.2.1 Synthesis of Amorphous Silica

750

19.2.2 Chemistry and Properties of Silica Surfaces

752

19.2.3 Silica Mixing and Compounding

757

19.3 Morphology of Filler Agglomerates

759

19.3.1 Particle and Pore Size Distribution

759

19.3.2 Dispersibility of Fine Particle Agglomerates

761

19.3.3 The Fractal Nature of Filler Particulates

763

19.4 Filler Reinforcement

766

19.5 Concluding Remarks

774

References

774

20 Compatibilizers – Mechanisms and Theory

782

20.1 Introduction

782

20.2 Parameters Affecting Wetting, Dispersion, and Adhesion

782

20.3 Fillers – Surface Modification and Interfacial Agents

783

20.4 Compatibilizers for Polymer Blends

787

Abbreviations

790

References

791

21 Dispersion of Two-Dimensional Nanoparticles in Polymer Melts

794

Alejandra Reyna-Valencia and Mosto Bousmina

794

21.1 Introduction

794

21.2 Clay Particle Characteristics

796

21.2.1 Structure

796

21.2.1.1 Characterisation by X-Ray Diffraction

798

21.2.2 Surface Interactions

799

21.2.3 Intercalation by Organic Surfactants

804

21.3 Exfoliation Process

807

21.4 Stability of the Exfoliated Structure

812

21.5 Role of Exfoliation On Macroscopic Behavior

814

21.6 Special Case: Clay Dispersion in Multiphase Systems

815

21.7 Modeling of Rheological Behavior

817

21.8 Concluding Remarks

821

Acknowledgements

822

References

822

22 Effect of Mixing on Properties of Compounds

826

22.1 Types of Aggregation and Interaction between Particles

826

22.3 Determination of Dispersion and Dispersion Index

829

22.4 Mixing and Dispersion in Practice

832

22.4.1 Agglomerate Dispersion

833

22.4.1.1 Profile of Dispersed Phase

833

22.4.1.2 Effect of Mixing Conditions

834

22.4.1.3 Effect of Surface Treatment

836

22.4.2 Fiber Mixing

837

22.4.3 Mixing of Clay Nanocomposite

838

22.5 Dispersion and Properties

839

22.5.1 Mechanical Properties

839

22.5.1.1 Effect of Agglomerate Dispersion

839

22.5.1.2 Effect of Interface

842

22.5.2 Electrical Properties

843

22.5.3 Properties of Clay Nanocomposites

846

22.5.4 Properties of Other Nanocomposites

849

22.6 Summary

849

Nomenclature

850

References

851

Part IV: Mixing Practices

854

23 Internal Mixers

856

23.1 Introduction

856

23.2 Mixing Mechanism of Internal Mixer

857

23.2.1 Structure of Internal Mixer

857

23.2.2 Mixing Steps for Mixing of Polymers and Fillers

859

23.2.3 Dispersion Mechanism of Fillers

859

23.3 Studies of Mixing Mechanism by Model Tests

860

23.3.1 Two-Dimensional and Three-Dimensional Model Tests

860

23.3.2 Improvement of Rotors by Model Tests

864

23.4 Development of New Rotor for Internal Mixers

866

23.4.1 Rotor in Tangential Type Internal Mixer

866

23.4.1.1 Four-Wing Rotor (4WN)

866

23.4.1.2 ST Rotor

867

23.4.1.3 Tangential Type 6-Wing Rotor (6WI)

868

23.4.2 Development of Rotors for Intermeshing Mixers

872

23.4.2.1 Intermeshing Mixers

872

23.4.2.2 VIC Mixer

873

23.4.2.3 Partial Intermeshing Mixer

874

23.5 Improvement of Internal Mixers

874

23.6 Summary

875

References

876

24 Mixing in Single-Screw Extruders

878

24.1 Introduction

878

24.2 Laminar Mixing in Melt Conveying

879

24.2.1 Effect of Reorientation

894

24.2.2 Backmixing

897

24.2.2.1 Cross Sectional Mixing and Axial Mixing

898

24.2.2.2 Residence Time Distribution

899

24.2.2.3 RTD in Screw Extruders

901

24.2.2.4 Methods to Improve Backmixing

902

24.2.2.5 Conclusions

904

24.2.3 Chaotic Mixing

904

24.3 Mixing Devices in Extrusion

908

24.3.1 Distributive Mixing Elements

912

24.3.1.1 The Vortex Intermeshing Pin (VIP) Mixer

921

24.3.1.2 Description of the VIP Mixer

923

24.3.1.3 Experimental Results

925

24.3.2 Dispersive Mixing Sections

932

24.3.2.1 Design of Dispersive Mixing Devices

933

24.3.3 Using the TSE Mixing Mechanism in Single Screw Extruders

957

Nomenclature

965

References

966

25 Mixing Practices in Co-Rotating Twin Screw Extruders

972

25.1 Introduction

972

25.2 Building Blocks for Mixing

973

25.2.1 Extruder Geometry

973

25.2.2 Element Geometry

976

25.3 Typical Process Mixing Tasks

988

25.3.1 Polymer/Polymer

988

25.3.2 Polymer/Low Aspect Ratio Filler

991

25.3.3 Elastomer – Elastomer/Low Aspect Ratio Filler

994

25.3.4 Polymer/High Aspect Ratio Filler (Fiber)

995

25.3.5 Polymer/Nano Scale Filler

997

25.3.6 Polymer/Low Viscosity Additives

999

25.4 Summary

1002

References

1003

26 Intermeshing Twin Screw Extruders

1006

26.1 Outline

1006

26.2 Total Compounding System

1008

26.2.1 Outline of the Total System

1008

26.2.2 Typical Machine Specifications and Output Capacities

1009

26.2.3 Extrusion Performance Simulation

1011

26.2.3.1 Melting Mechanism Analysis

1012

26.2.3.2 Twin Screw Extrusion Characteristics Simulation

1013

26.3 Compounding Applications

1016

26.3.1 Inorganic Filler Compounding

1016

26.3.2 Glass-Fiber Compounding

1020

26.3.2.1 Short Glass Fiber Compounding

1020

26.3.2.2 Long Glass Fiber Compounding and Molding

1020

26.3.3 Polymer Nano-Composite Compounding

1022

26.3.4 Polymer Blending

1024

26.3.4.1 Miscible Polymer Blending

1024

26.3.4.2 Immiscible Polymer Blending

1027

26.4 Reactive Extrusion

1031

26.4.1 Advantages of Reactive Extrusion

1031

26.4.2 Typical Chemical Reactions

1033

26.4.3 Recycling Applications

1036

26.4.3.1 PET Direct Extrusion

1036

26.4.3.2 PET Modification for Producing Foamed Sheet

1036

26.4.3.3 Combination of Reactive Processing and Injection Molding

1038

26.5 Devolatilization

1040

26.5.1 Effects of Water Addition

1040

26.5.2 High Concentration Devolatilization

1041

References

1042

27 Reactive Compounding

1044

27.1 Introduction

1044

27.2 Free Radical Grafting of Monomers onto Polymers

1045

27.2.1 Overall Reaction Scheme

1047

27.2.2 Free Radical Grafting in a Batch Mixer

1049

27.2.2.1 Effect of Comonomers

1049

27.2.2.2 Effect of Temperature

1051

27.2.2.3 Effect of Mixing

1052

27.2.3 Free Radical Grafting in a Twin Screw Extruder

1053

27.2.3.1 Effect of Screw Design

1053

27.2.3.2 Effect of Plastication/Melting

1054

27.2.3.3 Effect of Feeding Mode

1057

27.2.4 Recent Developments

1061

27.2.4.1 Fractional Feeding

1061

27.2.4.2 Concept of Nano-Reactors

1062

27.3 Reactive Blending

1065

27.3.1 General Features of Morphology Development

1065

27.3.2 Reactive Blending in Batch Mixers or Analogues

1072

27.3.2.1 Effect of the Copolymer Formation Kinetics

1072

27.3.2.2 Effect of Mixing Time

1076

27.3.2.3 Effect of Mixing Intensity

1077

27.3.3 Reactive Blending in Screw Extruders

1078

27.3.3.1 Non-Reactive versus Reactive Blends

1080

27.3.3.2 Effect of Screw Configuration

1081

27.3.3.3 Effect of the Compatibilizer Content

1082

27.3.3.4 Adverse Effect of Mixing

1083

27.3.4 One-Step versus Two-Step Reactive Blending

1086

27.3.5 Comparison of in situ Compatibilization to Separate Copolymer Addition

1090

27.3.6 Polymerized Blends

1092

27.3.6.1 Intractable Engineering Plastics/Monomer Systems

1092

27.3.6.2 Nano-Blends

1092

27.4 Compounding of Polymer Nanocomposites

1093

27.4.1 Multi-Scale Structures of Montmorillonite (MMT)

1094

27.4.2 Mechanisms of Dispersion of MMT in Polymers

1095

27.4.3 Factors Affecting the Rate and Scale of Dispersion of MMT in Polymers

1095

27.4.4 Water-Assisted MMT Dispersion in Polymers

1100

27.5 Summary

1103

References

1104

28 Continuous Mixers

1106

28.1 Introduction

1106

28.2 Structure and Principles of Operation

1107

28.2.1 Solids Conveying

1109

28.2.2 Melting

1110

28.2.3 Mixing

1111

28.2.4 Devolatilization

1113

28.2.5 Pumping

1114

28.3 Modeling

1116

28.3.1 Circumferential Flow

1118

28.3.2 Global Flow Models

1136

28.3.3 Scale-Up Considerations

1146

28.4 Rotor Design

1149

28.4.1 Single-Stage Rotors

1149

28.4.2 Two-Stage Rotors

1154

28.5 Conclusion

1157

List of Symbols

1158

Abreviations

1159

References

1160

Subject Index

1164

 

© 2009-2024 ciando GmbH