Joining of Plastics - Handbook for Designers and Engineers

Jordan Rotheiser

Joining of Plastics

Handbook for Designers and Engineers

2015

626 Seiten

Format: PDF, Online Lesen

E-Book: €  159,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446445956

 

Dedication

6

Foreword

8

Preface

10

Acknowledgments

12

Contents

14

Introduction

29

1 Rapid Guidelinesfor Joining of Plastics and Efficient Use of This Handbook

34

1.1 Efficient Use of ThisHandbook

34

1.2 Rapid Guidelines for Assembly of Plastics

35

1.2.1 Adhesives (Chapter7)

35

1.2.1.1 Liquids: Solvent-Based, Water-Based, and Anaerobic Adhesives

35

1.2.1.2 Mastics

36

1.2.1.3 Hot Melts

36

1.2.1.4 Pressure-Sensitive Adhesives

36

1.2.2 Fasteners and Inserts (Chapter8)

36

1.2.3 Hinges (Chapter 9)

37

1.2.4 Hot Plate/Hot Die/Fusion and Hot Wire/Resistance Welding (Chapter10)

37

1.2.5 Hot Gas Welding (Chapter11)

38

1.2.6 Induction Welding (Chapter12)

38

1.2.7 Insert Molding (Chapter13)

38

1.2.8 Multipart Molding (Chapter 13)

39

1.2.9 Press Fits/Force Fits/Interference Fits/Shrink Fits (Chapter14)

39

1.2.10 Solvent Joining (Chapter7)

39

1.2.11 Snap Fits (Chapter15)

40

1.2.12 Spin Welding (Chapter16)

40

1.2.13 Staking/Swaging/Peening/ColdHeading/Cold Forming (Chapter17)

40

1.2.14 Threads–Molded in (Chapter18)

41

1.2.15 Threads–Tapped (Chapter18)

41

1.2.16 Ultrasonic Welding (Chapter19)

41

1.2.17 Vibration Welding (Chapter20)

42

1.2.18 Welding with Lasers (Chapter21)

42

1.3 Assembly Methods Selection by Size

42

1.4 Assembly Methods Selection by Joining Time

44

2 Designing for Efficient Assembly

45

2.1 Avoiding Part Distortion

45

2.2 Inside Corner Stress

46

2.3 Ribsand Bosses

47

2.4 Draft

48

2.5 Shrinkage

50

2.6 Fitments

52

2.6.1 Drawing Conventionsfor Plastic Assembly

52

2.6.2 Importance of Tolerancingfor Assembly

54

2.6.3 Special Drafting Practices for Plastics

55

2.6.4 Procedurefor Establishing Tolerances

59

2.7 Design Practices for Looser Tolerances in Plastics

60

2.7.1 Three-Point Location

61

2.7.2 Hollow Bosses

61

2.7.3 Crush Ribs

63

2.7.4 Flexible Ribs

64

2.7.5 Inside/Outside Fitments

65

2.7.6 Step Fitments

65

2.8 More Relaxed Tolerances for Large Parts

66

2.8.1 Drillin Place

66

2.8.2 Oversize Hole with Washer

66

2.8.3 Criss Cross Slots

66

2.8.4 Separation of Functions

67

2.8.5 Corner Clearance

67

2.9 Semidovetail Joint

68

2.10 Minimizing the Effect of Misalignment on Appearance

69

2.11 The Plastic Product Design for Assembly Checklist

69

2.12 Testing

69

3 Cost Reduction In Assembly

73

3.1 Introduction

73

3.2 The Micro Approach to Part Reduction

73

3.2.1 Combining Parts Through Materials

74

3.2.2 Combining Parts Through Processes

75

3.3 The Macro Approach to Part Reduction

76

3.3.1 Multiple Material Processing

80

3.3.2 Coextrusion

81

3.3.3 Coinjection Molding

82

3.3.4 Multipart or Two-Color Injection Molding

82

3.4 Elimination of Fasteners

82

3.4.1 Multiple Parts per Fastener

83

3.4.2 Press and Snap Fits

83

3.4.3 Integral Hinges

84

3.4.4 Combining Fastener Elimination Concepts

84

3.5 Holistic Design

86

3.5.1 The Overall Design Considerations

86

3.5.2 The Thread Design

87

3.5.3 The Processing Considerations

88

3.5.4 The Tooling Considerations

88

3.5.5 Execution

89

3.5.6 Toward Holistic Design

89

4 Design for Disassembly and Recycling

91

4.1 Introduction

91

4.2 Design for Disassembly

92

4.2.1 Reopenable Assemblies

92

4.2.2 Permanent Assemblies

96

4.3 Design for Recycling

97

4.3.1 Simplification

98

4.3.2 Assembly Method Selection

98

4.3.2.1 Reopenable Methods

98

4.3.2.2 Permanent Methods

99

4.3.3 Material Selection

99

4.3.4 Additives

100

4.3.5 Contaminants

101

4.3.6 Material Reduction

101

4.3.7 Identification and Disassembly Instructions

103

5 Assembly Method Selection by Material

104

5.1 Thermoplastics Versus Thermosets

104

5.2 Amorphous Versus Semicrystalline Thermoplastics

105

5.2.1 Postmolding Shrinkage

106

5.2.2 Coefficient of Linear Thermal Expansion

106

5.2.3 Weldability

107

5.2.4 Solvent Sealability

107

5.3 Thermosets

107

5.4 Assembly Method by Material

108

5.4.1 Properties and Assembly-Related Data for Selected Materials

114

5.4.2 Adhesives

147

5.4.3 Using the SPI Tables

147

5.5 Material Databases

189

5.6 Material Suppliers

189

6 Assembly Method Selection by Process

191

6.1 Introduction

191

6.2 Blow Molding

191

6.2.1 The Process

191

6.2.2 Assembly Considerations

192

6.3 Casting, Potting, Encapsulation, and Embedment

193

6.3.1 The Processes

193

6.3.2 Assembly Considerations

194

6.4 Coextrusion

194

6.5 Co-Injection Molding

194

6.6 Cold Press Molding

194

6.6.1 The Process

194

6.6.2 Assembly Considerations

195

6.7 Compression Molding

195

6.7.1 The Process

195

6.7.2 BMC: Bulk Molding Compound

196

6.7.3 SMC: Sheet Molding Compound

196

6.7.4 Assembly Considerations

196

6.8 Extrusion

197

6.8.1 The Process

197

6.8.2 Coextrusion

198

6.8.3 Assembly Considerations

199

6.9 Filament Winding

200

6.9.1 The Process

200

6.9.2 Assembly Considerations

201

6.10 Gas-Assisted Injection Molding

201

6.11 Gas Counter Pressure Structural Foam Molding

201

6.12 Injection Molding

201

6.12.1The Process

201

6.12.2 Assembly Considerations

202

6.13 Lay-up and Spray-up

203

6.13.1 The Processes

203

6.13.2 Assembly Considerations

203

6.14 Machining

204

6.14.1 The Process

204

6.14.2 Thermoplastics

205

6.14.3 Thermosets

205

6.14.4 Assembly Considerations

206

6.15 Pultrusion

206

6.15.1The Process

206

6.15.2 Assembly Considerations

207

6.16 Reaction Injection Molding (RIM)

207

6.16.1 The Process

207

6.16.2 Assembly Considerations

208

6.17 Resin Transfer Molding (RTM)

209

6.17.1 The Process

209

6.17.2 Assembly Considerations

210

6.18 Rotational Molding

210

6.18.1 The Process

210

6.18.2 Assembly Considerations

212

6.19 Structural Foam Molding, Gas Counterpressure Structural Foam Molding, and Coinjection Molding

213

6.19.1 The Processes

213

6.19.2 Assembly Considerations

214

6.20 Thermoforming

216

6.20.1 The Processes

216

6.20.2 Thin-Gauge Thermoforming

217

6.20.3 Heavy-Gauge Thermoforming

217

6.20.4 Pressure Thermoforming

218

6.20.5 Other Forming Processes

218

6.20.6 Assembly Considerations

218

6.21 Twin-Sheet Thermoforming

219

6.21.1 The Process

219

6.21.2 Assembly Considerations

220

6.22 Transfer Molding

220

6.22.1 The Process

220

6.22.2 Assembly Considerations

221

6.23 Process Selection

221

6.23.1 Thermoplastic Open Shapes

223

6.23.2 Thermoset Open Shapes

224

6.23.3 Hollow Parts

225

6.23.4 Profiles

225

6.23.5 Ultra High Strength

226

7 Adhesive and Solven tJoining

227

7.1 Advantages and Disadvantages

227

7.1.1 Advantages

227

7.1.2 Disadvantages

229

7.2 Basic Theory and Terminology

230

7.3 Methods for Measuring the Wettability of a Plastic Surface

232

7.3.1 Contact Angle Test

232

7.3.2 Wetting Tension Test (ASTMD-2578-73, Wetting Tension of Polyethylene and Polypropylene Films)

232

7.3.3 Adhesion Ratio Test (Tentative ASTM D-2141-63R)

233

7.3.4 Water Spreading Test

233

7.3.5 Dye Stain Test

233

7.3.6 Ink Retention Test

233

7.4 Surface Treatments

234

7.4.1 Solvent Cleaning

235

7.4.1.1 Solvent Immersion

236

7.4.1.2 Solvent Wiping

236

7.4.1.3 Solvent Spray

236

7.4.1.4 Vapor Degreasing

236

7.4.1.5 Ultrasonic Vapor Degreasing

236

7.4.1.6 Ultrasonic Cleaning with Liquid Rinse

236

7.4.2 Abrasive Methods

236

7.4.2.1 Dry Abrasion

237

7.4.2.2 Dry Abrasive Blast

237

7.4.2.3 Wet Abrasive Blast

237

7.4.2.4 Wet Abrasive Scour

238

7.4.2.5 Detergent Scrub

238

7.4.3 Surface Energy Treatments and Process Selection Factors

238

7.4.3.1 Chemical Treatment

238

7.4.3.2 Corona Treatment

238

7.4.3.3 Plasma Treatment

240

7.4.3.4 Flame Treatment

240

7.4.3.5 Process Selection Factors

241

7.4.4 Shelf Life of Surface Treatments

241

7.5 Design for Adhesion

241

7.5.1 Shear Stress

242

7.5.2 TensileStress

242

7.5.3 Cleavage

242

7.5.4 Peel

243

7.5.5 Adhesive Joint Designs

243

7.5.5.1 Load-Bearing or Non-Load-Bearing Joints

243

7.5.5.2 Lap Joints

244

7.5.5.3 Butt Joints

249

7.5.5.4 Screw and Glue

252

7.6 Adhesives

252

7.6.1 Acrylics

259

7.6.2 Anaerobics

259

7.6.3 Cyanoacrylates

260

7.6.4 Epoxies

260

7.6.5 Hot Melts

261

7.6.6 Phenolics

261

7.6.7 Polyurethanes

262

7.6.8 Polysulfides

262

7.6.9 Pressure-Sensitive Adhesives

262

7.6.10 Silicones

263

7.6.11 Solvent-Based Adhesives

263

7.6.12 Water-Based Adhesives

263

7.7 Solvents

264

7.8 Adhesive and Solvent Assembly Techniques

266

7.8.1 Fixturing

266

7.8.2 Clamping

267

7.8.3Application Methods

268

7.8.3.1CapillaryMethod

268

7.8.3.2Dip or Soak Method

269

7.9 Adhesive and Solvent System Selection

270

7.10 Glossary

272

7.11 Sources

274

8 Fasteners and Inserts

277

8.1 Advantages and Disadvantages

277

8.1.1Advantages of Using Fasteners

277

8.1.2 Disadvantages of Using Fasteners

277

8.2 Basic Design Considerations for Fasteners

279

8.2.1 Creep Effects

279

8.2.2 Stress Relaxation Effects

280

8.2.3 Notch Sensitivity

280

8.2.4 Craze Resistance

281

8.2.5 Stiffness Considerations

282

8.2.6 Differentials in the Coefficients of Linear Thermal Expansion

282

8.2.7Loss of Properties Due to Moisture

283

8.2.8 Clamp Load

283

8.2.8.1 Strain Method

283

8.2.8.2 Torque Method

284

8.2.9 Vibration Resistance

285

8.3 Methods of Using Fasteners with Plastics

285

8.3.1 Press-in Fasteners

286

8.3.2 Self-Tapping Screws

287

8.3.2.1Strength of PlasticThreads

287

8.3.2.2Thread-Forming andThread-CuttingScrews

289

8.3.3 Special Screwsfor Plastics

292

8.3.3.1NarrowThread Forms

292

8.3.3.2AlternatingThreadHeights

292

8.3.3.3Asymmetrical Thread Forms

292

8.4 Selection of Self-Tapping Screws

292

8.4.1 Cost Criteria

293

8.4.2 Fail/Drive Ratio and Differential

293

8.4.3 Strength Criteria

294

8.4.4 Thread Cutting or Thread Forming

295

8.4.5 Tapped or Molded-in Threads

295

8.5 Threaded Inserts: Advantages

296

8.6 Boss Cap

297

8.7 Helical Coil Inserts

297

8.8 Self-Tapping Inserts

298

8.9 Press-in Inserts

298

8.10 Glue-in Inserts

299

8.11 Expansion Inserts

299

8.12 Molded-in Inserts

300

8.13 Ultrasonic Inserts

300

8.14 Heat-Installed Inserts

303

8.15 Induction Inserts

304

8.16 Hermetic Seals

305

8.17 Studs

305

8.18 Insert Design Considerations

306

8.19 Uor J-Clips

306

8.20 Tee Nuts

307

8.21 Machine Screws

307

8.22 Tapping and Stud Plates

309

8.23 Plastic Screws

309

8.24 Screw Heads and Washers

310

8.25 Boss Designs

310

8.25.1Design Criteria

310

8.25.2BossSinks

311

8.25.2.1 Coring

311

8.25.2.2 Location

313

8.25.2.3 Support

313

8.25.2.4 Material

314

8.25.2.5 Surface Treatment

314

8.25.3Weld Lines

314

8.26 Self-Threading Nuts

316

8.27 Twist Nuts

316

8.28 Press-on Nuts

316

8.29 Spring Clips

317

8.30 Push-in Fasteners

317

8.31 Rivets

317

8.32 Sources

319

8.32.1 Fasteners and Inserts

319

8.32.2 Threaded-Insert

320

8.32.3 Thermal Insertion Equipment

321

8.32.4 Induction Insertion Equipment

321

8.33.5 Ultrasonic Insertion Equipment

321

9 Hinges

322

9.1 Advantages and Disadvantages

322

9.1.1 Advantages

322

9.1.2 Disadvantages

322

9.2 One-Piece Integral Hinges

322

9.2.1 The Living Hinge

323

9.2.1.1Living HingeDesign

324

9.2.1.2Living HingeMolding Considerations

327

9.2.1.3Living Hinges by Other Processes

331

9.2.2 The Mira Spring Hinge

333

9.2.3 Standard Hinges

335

9.2.4 Tab Hinges

336

9.3 Two-Piece Plastic Hinges

336

9.3.1 Ball-and-Socket Hinges

337

9.3.2 Two-PieceLug-and-Pin Hinges

337

9.3.3 Hook-and-Eye Hinges

338

9.4 Three-Piece Hinges

338

9.4.1 Three-Piece Lug and Pin

339

9.4.2 Piano Hinge

339

9.5 Latches

340

9.5.1 Snaps

340

9.5.2 Rathbun Spring

340

9.6 Number of Hinges and Location

340

10 Hot Plate/Hot Die/Fusion and Hot Wire/Resistance Welding

341

10.1 Advantages and Disadvantages

341

10.1.1 Description

341

10.1.2 Advantages

341

10.1.3 Disadvantages

342

10.2 Materials

343

10.3 The Process

344

10.4 Types of Hot Plate Welding

348

10.4.1 Low Temperature Hot Plate Welding

348

10.4.2 High Temperature Hot Plate Welding

348

10.4.3 Noncontact Hot Plate Welding

349

10.5 Hot Plate Welding Joint Designs

349

10.6 Equipment

351

10.7 Hot Wire/Resistance Welding

352

10.8 Sources

353

11 Hot Gas Welding

354

11.1 Advantages and Disadvantages

354

11.1.1 Advantages

354

11.1.2 Disadvantages

354

11.2 The Process

355

11.2.1 Tack Welding

355

11.2.2 Permanent Hot Gas Welding

356

11.2.3 High Speed Welding

357

11.2.4 Extrusion Welding

359

11.3 Joint Designs

359

11.4 Welding Practice

361

11.4.1 Appearance Problems

362

11.4.2 Cracking Problems

363

11.4.3 Distortion

363

11.4.4 Fusion Problems

363

11.4.5 Penetration

363

11.4.6 Porosity

364

11.4.7 Scorching

364

11.5 Testing the Weld

364

11.5.1 Nondestructive Testing

364

11.5.1.1 Visual Examination

364

11.5.1.2 Leak Tests

365

11.5.2 Destructive Tests

365

11.5.2.1 Tensile Test

365

11.5.2.2 Bending Test

365

11.5.2.3 Rod Removal Test

365

11.5.3 Chemical Test

365

11.5.4 Spark Test

366

11.6 Applications

366

11.7 Sources

366

11.7.1 Welding Rods

366

11.7.2 Welding Equipment

366

11.7.3 Welding Rod And Equipment

367

12 Induction/Electromagnetic Welding

368

12.1 Description

368

12.2 Advantages and Disadvantages

368

12.2.1 Advantages

368

12.2.2 Disadvantages

369

12.3 The Equipment

370

12.4 The Process

372

12.5 The Coil

373

12.5.1 Single-Turn Coils

373

12.5.2 Hairpin Coils

373

12.5.3 Multi-Turn Coils

374

12.5.4 Split Coils

374

12.5.5 Other Types of Coils

375

12.5.6 Coil Positioning

375

12.5.7 Flux Concentrators

376

12.6 Materials

376

12.6.1 Polymers

376

12.6.2 The Electromagnetic Material

376

12.6.2.1 Molded-in Pre-Forms

376

12.6.2.2 Hot Melt Electromagnetic Materials

377

12.6.2.3 Liquid Electromagnetic Materials

378

12.7 Joint Designs

378

12.8 Encapsulation

381

12.9 Film and Sheeting

381

12.9.1 Intermittent Sealing

381

12.9.2 Continuous Sealing

382

12.10 Inserting Metal into Plastic

382

12.11 Sources

383

13 Insert and Multipart Molding

384

13.1 Description

384

13.2 Insert Molding

384

13.2.1 Advantages of Insert Molding

384

13.2.2 Disadvantages of Insert Molding

385

13.2.3 Design with Threaded Inserts

386

13.2.4 Mold Considerations for Threaded Inserts

389

13.2.5 Custom-Designed Inserts

391

13.2.6 Outserts: Inserts Larger than the Moldment

395

13.2.7 Hermetic Seals

396

13.2.8 PreparationofInserts

396

13.2.9 Decorative Inserts

397

13.3 Multi-Part Molding

399

13.3.1 Description

399

13.3.2 Advantages Particular to Multi-part Molding

399

13.3.3 Disadvantages Particular to Multi-part Molding

400

13.3.4 The Process

400

13.3.5 Materials

403

14 Press Fits/Force Fits/ Interference Fits/Shrink Fits

405

14.1 Advantages and Disadvantages

405

14.1.1 Advantages

405

14.1.2 Disadvantages

405

14.2 Press Fit Engineering

406

14.2.1 Engineering Notation

406

14.2.2 Geometric Factor

408

14.2.3 Changes Due to Temperature Variations

408

14.2.4 Hoop Stress

409

14.2.4.1 Metal Shaft in Plastic Boss

409

14.2.4.2 Shaft and Boss of Same Material

409

14.2.4.3 Shaft and Boss of Different Plastics

409

14.2.4.4 Quick Methods

410

14.2.5 Assembly and Disassembly Forces

410

14.2.6 Dimensional Changes Due to Assembly

411

14.2.7 Relationships

411

14.2.8 Equation Limitations

412

14.3 Safety Factor

417

14.4 Processing

417

14.5 Material Selection

418

14.6 Part Design

418

14.6.1 Heavy-Duty Press Fits

418

14.6.2 Light-Duty or Reopenable Press Fits

419

14.6.3 Other than Round

420

14.7 Case Studies

421

14.7.1 Determination of Changes in Diameter Due to Temperature Variations

421

14.7.2 The Geometric Factor for Use In Press Fit Equations

422

14.7.3 Determination of Design Stress and for a Metal Shaft in a Plastic Boss Maximum Allowable Interference for a Metal Shaftina Plastic

422

14.7.4 Dimensional Changes Due to Assembly

424

14.7.4.1 Metal Shaft in Plastic Boss

424

14.7.4.2 Plastic Shaft and Metal Boss

424

14.7.5 Determination of Design Stress and Maximum Allowable Interference for a Shaft and Boss of the Same Material

425

14.7.6 Determination of Design Stress and Maximum Allowable Interference for a Shaft and Boss of Different Plastics

426

14.7.7 Determination of Assembly and Disassembly Forces

428

14.7.8 Determination of Torsional Holding Capacity

428

15 Snap Fits

429

15.1 Advantages and Disadvantages

429

15.1.1 Advantages

429

15.1.2 Disadvantages

430

15.2 General Applications

431

15.3 General Engineering Principles

431

15.3.1 Allowable Dynamic Strain

431

15.3.2 Corner Stress Concentrations

432

15.3.3 Engineering Adjustments When Both Parts Are Elastic

433

15.3.4 Finite Element Analysis

434

15.4 Cantilever Snap Fits

434

15.4.1 Cantilever Snap Fit Designs

434

15.4.2 Cantilever Snap Fit Engineering

437

15.5 Cylindrical, Ring, Perimeter, or Annular Snap Fits

443

15.5.1 Cylindrical Snap Fit Designs

443

15.5.2 Engineering of Cylindrical, Ring, Perimeter, or Annular Snap Fits

445

15.5.2.1 Maximum Permissible Interference

445

15.5.2.2 Transverse and Axial Forces

445

15.6 Torsion Snap Fits

448

15.6.1 Torsion Snap Fit Designs

448

15.6.2 Engineering of Torsion Snap Fits

448

15.8 The Injection Molding Process

451

15.9 Molds for Snap Fits

452

15.9.1 The Basics of Injection Mold Construction

452

15.9.2 Ejection and Cooling Systems for Stripping Molds

454

15.9.3 Cores for Nonstripping Molds

456

15.9.4 Snap Fit Details in the Mold Cavity

458

15.11 Case Studies

461

15.11.1 Cantilever Snap Fit Determination of Permissable Deflection

461

15.11.2 Cantilever Snap Fit Determination of Radial and Mating Forces

464

15.11.3 Annular Snap Fit Determination of Maximum Permissable Interference

465

15.11.4 Annular Snap Fit Determination of Maximum Design Strain

465

15.11.5 Annular Snap Fit Determination of Transverse and Axial Forces for a Snap Fitment Located Near the End of the Tube

466

15.11.6 Annular Snap Fit Determination of Transverse and Axial Forces for a Snap Fitment Located Remote From the End of the Tube

467

15.11.7 Self-locking Angle

468

16 Spin Welding

469

16.1 Description of Spin Welding

469

16.2 Advantages and Disadvantages of Spin Welding

469

16.2.1 Advantages

469

16.2.2 Disadvantages

470

16.3 Spin Welding Process

471

16.4 Materials

473

16.5 Design for Spin Welding

475

16.5.1 Overall Design Considerations

475

16.5.2 Joint Designs

475

16.6 The Equipment for Spin Welding

477

16.6.1 Drill-Press-Based Spin Welders

477

16.6.1.1 Tooling for Drill-Press-Based Inertial Welding

477

16.6.1.2 Tooling for Drill-Press-Based Pivot Tool Welding

478

16.6.2 Commercial Inertia Spin Welders

478

16.6.3 Commercial Direct-Drive Spin Welders

480

16.7 Sources

482

17 Staking/Swaging/Peening/ Cold Heading/Cold Forming

483

17.1 Advantages and Disadvantages of Staking/ Cold Forming

483

17.1.1 Advantages

483

17.1.2 Disadvantages

484

17.2 Staking

484

17.2.1 Cold Forming of Stakes

485

17.2.2 Hot Air/Cold Staking

487

17.2.3 Ultrasonic Cold Forming

488

17.2.4 Hot Die Forming of Stakes (Thermal Staking)

490

17.2.5 Ultrasonic Hot Forming of Stakes

490

17.2.6 Laser Staking

491

17.3 Stake Design

491

17.3.1 The Stud

491

17.3.2 Stake Heads

492

17.4 Swaging

495

17.5 Sources

496

17.5.1 Thermal Staking

496

17.5.2 Hot Air/Cold Staking

497

17.5.3 Laser Staking

497

17.5.4 Ultrasonic

497

18 Threads: Tapped and Molded-in

498

18.1 Advantages and Disadvantages of Integral Threads

498

18.1.1Advantages Commonto Threads of BothTypes

498

18.1.2 Disadvantages Common toThreads of Both Types

498

18.2 Drilled and Tapped Holes in Plastics

499

18.2.1 Advantages Unique to Tapped Threads

499

18.2.2 Disadvantages Unique to Tapped Threads

499

18.2.3 Drilling Holes in Plastics

500

18.2.4 Reaming Holes in Plastics

501

18.2.5 Tapping Holes in Plastics

501

18.3 Molded Threads in Plastics

504

18.3.1 Advantages Unique to Molded-in Threads

504

18.3.2 Disadvantages Unique to Molded-in Threads

504

18.3.3 Thread Design

504

18.3.4 Molds for Threads

506

18.3.4.1 Stripping Molds for Internal Threads

507

18.3.4.2 Collapsing Core Molds for Internal Threads

508

18.3.4.3 Expandable Cavity Molds for External Threads

510

18.3.4.4 Split-Cavity Molds for External Threads

510

18.3.4.5 Unscrewing Molds for Internal Threads

512

18.3.4.6 Unscrewing Chuck Plate Mold

512

18.3.4.7 Molds for Parts with Less than One Turn of Thread

512

18.4 Sources

513

18.4.1Collapsing Cores and Cavities

513

18.4.2 Unscrewing Chuck

513

19 UltrasonicWelding

514

19.1 Advantages and Disadvantages of Ultrasonic Welding

514

19.1.1Advantages

514

19.1.2Disadvantages

515

19.2 General Applications

516

19.3 The Principle of Ultrasonic Welding

516

19.4 Materials for Ultrasonic Welding

517

19.4.1 Additives and Contaminants

520

19.4.1.1 Colorants

520

19.4.1.2 Fillers, Extenders, and Fibrous Reinforcements

520

19.4.1.3 Flame Retardants

522

19.4.1.4 Foaming Agents

522

19.4.1.5 Impact Modifiers

522

19.4.1.6 Lubricants

522

19.4.1.7 Mold Releases

522

19.4.1.8 Painted Parts

523

19.4.1.9 Plasticizers

523

19.4.1.10 Regrind

523

19.5 Part Design for Ultrasonic Welding

523

19.5.1 Overall Ultrasonic Welding Considerations

523

19.5.1.1 Strength Requirements

524

19.5.1.2 Appearance Requirements

524

19.5.1.3 Rigidity Considerations

524

19.5.2 Joint Fundamentals

527

19.5.2.1 Part Alignment

527

19.5.2.2 Uniform Vibration Travel Distance

527

19.5.2.3 Minimal Initial Contact Area

528

19.5.3 Energy Director Joints

529

19.5.3.1 Butt Joint

529

19.5.3.2 Joint Layout

531

19.5.3.3 Textured Surface

533

19.5.3.4 Step Joint

533

19.5.3.5 Tongue-and-Groove Joint

534

19.5.4 Shear Joints

535

19.5.5 Hermetic Seals

539

19.5.6 Scan Welding

539

19.5.7 Stud Welding, Staking, Swaging, and Spot Welding

541

19.5.7.1 Stakingand Swaging

541

19.5.7.2 Stud Welding

541

19.6 Fabric and Film Sealing

546

19.7 The Ultrasonic Equipment

548

19.7.1 The Basic Principles

548

19.7.2 The Power Supply or Generator

549

19.7.3 The Converter or Transducer

550

19.7.4 The Booster

550

19.7.5 The Horn

550

19.7.6 The Fixture

552

19.7.7 The Controls

553

19.7.8 Equipment Frequency

554

19.7.9 Automation of Ultrasonic Welding

556

19.8 Sources

556

20 Vibration Welding

557

20.1 Advantages and Disadvantages

557

20.1.1 Comparison with Ultrasonic Welding

557

20.1.2 Advantages of Vibration Welding

557

20.1.3 Disadvantages of Vibration Welding

558

20.2 The Process of Vibration Welding

559

20.2.1 Linear Vibration Welding

561

20.2.2 Orbital Vibration Welding

561

20.2.3 Angular Vibration Welding

562

20.3 Materials

562

20.4 Vibration Welding Part Design

565

20.4.1 Basic Considerations

565

20.4.2 Joint Designs for Linear Vibration Welding

566

20.5 The Equipment

569

20.6 Sources

570

21 Welding with Lasers

571

21.1 Advantages and Disadvantages

571

21.1.1 Non-Contact, Surface, Direct, or Butt Laser Welding

571

21.1.2 Laser Staking

572

21.1.3 Through TransmissionInfra-Red Laser Welding

572

21.1.4 Advantages of Through Transmission Laser Welding

573

21.1.5 Disadvantages of Through Transmission Laser Welding

575

21.2 The Process of Laser Welding

575

21.2.1 The Laser

575

21.2.2 Basic Through Transmission Laser Welding Methods

577

21.2.3 Spot or Contour Welding

578

21.2.4 Simultaneous Through TransmissionInfra-Red (STTIr) Laser Welding (Also Known as Simultaneous Line or Flash Welding)

580

21.2.5 Quasi-Simultaneous Laser Welding

581

21.2.6 Mask Welding (Leister Patented Process)

582

21.3 Materials for Laser Welding

583

21.3.1 Material Properties Affecting Laser Weldability

583

21.3.2 Effects of Refraction Properties on Material Selection

585

21.3.3 Effects of Pigments, Fillers, and Additives on Light Transmission

586

21.3.4 Laser Welding Transmitting Materials

587

21.3.5Compatibility of Plastics for Laser Welding

589

21.4 Joint Designs

589

21.5 Equipment

591

21.6 Applications

592

21.7 Sources

593

References

594

Index

601

 

© 2009-2024 ciando GmbH