Engineering with Rubber - How to Design Rubber Components

Alan N. Gent

Engineering with Rubber

How to Design Rubber Components

2012

453 Seiten

Format: PDF, Online Lesen

E-Book: €  149,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446428713

 

Contents

6

Preface to Third Edition

16

Authors

18

1 Introduction

20

1.1 Rubber in Engineering

20

1.2 Elastomers

21

1.3 Dynamic Application

22

1.4 General Design Principles

22

1.5 Thermal Expansivity, Pressure, and Swelling

23

1.6 Specific Applications and Operating Principles

24

1.7 Seal Life

27

1.8 Seal Friction

27

Acknowledgments.

28

References.

28

2 Materials and Compounds

30

2.1 Introduction

30

2.2 Elastomer Types

31

2.2.1 General Purpose

31

2.2.1.1 Styrene-Butadiene Rubber (SBR)

31

2.2.1.2 Polyisoprene (NR, IR)

32

2.2.1.3 Polybutadiene (BR)

33

2.2.2 Specialty Elastomers

33

2.2.2.1 Polychloroprene (CR)

33

2.2.2.2 Acrylonitrile-Butadiene Rubber (NBR)

34

2.2.2.3 Hydrogenated Nitrile Rubber (HNBR)

34

2.2.2.4 Butyl Rubber (IIR)

34

2.2.2.5 Ethylene-Propylene Rubber (EPR, EPDM)

34

2.2.2.6 Silicone Rubber (MQ, VMQ, PMQ, PVMQ)

35

2.2.2.7 Polysulfide Rubber (T)

35

2.2.2.8 Chlorosulfonated Polyethylene (CSM)

35

2.2.2.9 Chlorinated Polyethylene (CM)

35

2.2.2.10 Ethylene-Methyl Acrylate Rubber (AEM)

36

2.2.2.11 Acrylic Rubber (ACM)

36

2.2.2.12 Fluorocarbon Rubbers

36

2.2.2.13 Epichlorohydrin Rubber (CO, ECO)

36

2.2.2.14 Urethane Rubber

36

2.3 Compounding

37

2.3.1 Vulcanization and Curing

37

2.3.1.1 Sulfur Curing

37

2.3.1.2 Determination of Crosslink Density

40

2.3.1.3 Influence of Crosslink Density

41

2.3.1.4 Other Cure Systems

42

2.3.2 Reinforcement

42

2.3.3 Anti-Degradants

44

2.3.3.1 Ozone Attack

45

2.3.3.2 Oxidation

45

2.3.4 Process Aids

47

2.3.5 Extenders

48

2.3.6 Tackifiers

48

2.4 Typical Rubber Compositions

49

Acknowledgment.

53

References.

53

Problems for Chapter.2.

54

Answers to Problems for Chapter.2.

54

3 Elasticity

56

3.1 Introduction

56

3.2 Elastic Properties at Small Strains

57

3.2.1 Elastic Constants

57

3.2.2 Relation Between Shear Modulus G and Composition

60

3.2.3 Stiffness of Components

63

3.2.3.1 Choice of Shear Modulus

63

3.2.3.2 Shear Deformations of Bonded Blocks and Hollow Cylindrical Tubes

64

3.2.3.3 Small Compressions or Extensions of Bonded Blocks

66

3.2.3.4 Compression of Blocks Between Frictional Surfaces

69

3.2.3.5 Maximum Allowable Loads in Tension and Compression

71

3.2.3.6 Indentation of Rubber Blocks by Rigid Indentors

72

3.2.3.7 Compression of O-rings

74

3.2.3.8 Protrusion of Rubber Through a Hole or Slit

74

3.3 Large Deformations

75

3.3.1 General Theory of Large Elastic Deformations

75

3.3.2 Forms for W Valid at Large Strains

77

3.3.3 Stress-Strain Relations in Selected Cases

78

3.3.3.1 Simple Extension

78

3.3.3.2 Equibiaxial Stretching

80

3.3.3.3 Constrained Tension (Pure Shear)

80

3.3.4 Determining the Strain Energy Function W

82

3.3.4.1 Elastic Behavior of Filled Rubber Vulcanizates

84

3.3.4.2 Does Any Strain Energy Function Apply?

86

3.3.5 Other Stress-Strain Relations Valid at Large Strains

86

3.3.5.1 Simple Shear

86

3.3.5.2 Torsion

89

3.3.5.3 Instability in Torsion

91

3.3.5.4 Inflation of a Thin-Walled Tube [58]

92

3.3.5.5 Inflation of a Spherical Shell (Balloon)

93

3.3.5.6 Inflation of a Spherical Cavity; Explosive Decompression

95

3.3.5.7 Surface Creasing in Compression

96

3.4 Molecular Theory of Rubber Elasticity

97

3.4.1 Elastic Behavior of a Molecular Network

97

3.4.3 Effective Density of Network Strands

100

3.4.4 The Second Term in the Strain Energy Function

101

3.4.5 Concluding Remarks on Molecular Theories

102

Acknowledgments.

103

References.

103

Problems for Chapter.3.

106

Answers to Selected Problems for Chapter.3.

107

4 Dynamic Mechanical Properties

108

4.1 Introduction

108

4.2 Stress Waves in Rubbery Solids, Transit Times, and Speeds of Retraction

109

4.3 Viscoelasticity

111

4.4 Dynamic Experiments

115

4.5 Energy Considerations

119

4.6 Motion of a Suspended Mass

121

4.7 Experimental Techniques

125

4.7.1 Forced Nonresonance Vibration

125

4.7.2 Forced Resonance Vibration

125

4.7.3 Free Vibration Methods

126

4.7.4 Rebound Resilience

126

4.7.5 Effect of Static and Dynamic Strain Levels

127

4.8 Application of Dynamic Mechanical Measurements

127

4.8.1 Heat Generation in Rubber Components

127

4.8.2 Vibration Isolation

128

4.8.3 Shock Absorbers

128

4.9 Effects of Temperature and Frequency

129

4.10 Thixotropic Effects in Filled Rubber Compounds

133

Acknowledgments.

135

References.

135

Problems for Chapter.4.

135

Answers to Problems for Chapter.4.

136

5 Strength

138

5.1 Introduction

138

5.2 Fracture Mechanics

138

5.2.1 Analysis of the Test Pieces

141

5.2.2 The Strain Energy Concentration at a Crack Tip

142

5.3 Tear Behavior

144

5.4 Crack Growth under Repeated Loading

150

5.4.1 The Fatigue Limit and the Effect of Ozone

151

5.4.2 Physical Interpretation of G0

152

5.4.3 Effects of Type of Elastomer and Filler

154

5.4.4 Effect of Oxygen

154

5.4.5 Effects of Frequency and Temperature

156

5.4.6 Nonrelaxing Effects

156

5.4.7 Time-Dependent Failure

157

5.5 Ozone Attack

157

5.6 Tensile Strength

161

5.7 Crack Growth in Shear and Compression

163

5.8 Cavitation and Related Failures

166

5.9 Conclusions

167

References.

168

Problems for Chapter.5.

171

Answers to Problems for Chapter.5.

172

6 Mechanical Fatigue

178

6.1 Introduction

178

6.2 Application of Fracture Mechanics to Mechanical Fatigue of Rubber

180

6.3 Initiation and Propagation of Cracks

182

6.3.1 Fatigue Crack Initiation

182

6.3.2 Fatigue Life and Crack Growth

183

6.3.3 Fatigue Crack Propagation: The Fatigue Crack Growth Characteristic

185

6.3.4 Fatigue Life Determinations from the Crack Growth Characteristics

187

6.4 Fatigue Crack Growth Test Methodology

189

6.4.1 Experimental Determination of Dynamic Tearing Energies for Fatigue Crack Propagation

189

6.4.2 Kinetics of Crack Growth

190

6.4.3 Effects of Test Variables on Fatigue Crack Growth Characteristics and Dynamic Fatigue Life

191

6.4.3.1 Waveform

191

6.4.3.2 Frequency

191

6.4.3.3 Temperature

191

6.4.3.4 Static Strain/Stress

193

6.5 Material Variables and Their Effect on Fatigue Crack Growth

195

6.5.1 Reinforcing Fillers and Compound Modulus

195

6.5.2 Elastomer Type

197

6.5.3 Vulcanizing System

198

6.5.3 Fatigue of Double Network Elastomers and Blends

200

6.6 Fatigue and Crack Growth of Rubber under Biaxial Stresses and Multiaxial Loading

201

6.7 Fatigue in Rubber Composites

203

6.7.1 Effect of Wires, Cords, and Their Spacing on Fatigue Crack Propagation

204

6.7.2 Effect of Minimum Strain or Stress

204

6.7.3 Comparison of S-N Curve and Fatigue Crack Propagation Constants for Rubber-Wire Composites [53]

206

6.7.4 Fatigue of Two-Ply Rubber-Cord Laminates

207

6.8 Fatigue Cracking of Rubber in Compression and Shear Applications

208

6.8.1 Crack Growth in Compression

208

6.8.2 Crack Growth in Shear

211

6.9 Environmental Effects

212

6.10 Modeling and Life Predictions of Elastomeric Components

213

6.11 Fatigue Crack Propagation of Thermoplastic Elastomers

213

6.12 Durability of Thermoplastic Elastomers

214

6.13 Summary

216

Acknowledgments.

217

References.

217

Problems for Chapter.6.

219

Answers to Problems for Chapter.6.

220

7 Durability

224

7.1 Introduction

224

7.2 Creep, Stress Relaxation, and Set

226

7.2.1 Creep

227

7.2.2 Stress Relaxation

227

7.2.3 Physical Relaxation

228

7.2.4 Chemical Relaxation

230

7.2.5 Compression Set and Recovery

230

7.2.6 Case History Study

232

7.3 Longevity of Elastomers in Air

233

7.3.1 Durability at Ambient Temperatures

233

7.3.2 Sunlight and Weathering

234

7.3.3 Ozone Cracking

234

7.3.4 Structural Bearings: Case Histories

235

7.3.4.1 Natural Rubber Pads for a Rail Viaduct after 100.Years of Service

235

7.3.4.2 Laminated Bridge Bearings after 20 Years of Service

236

7.4 Effect of Low Temperatures

239

7.4.1 Glass Transition

239

7.4.2 Crystallization

240

7.5 Effect of Elevated Temperatures

241

7.6 Effect of Fluid Environments

243

7.6.1 Aqueous Liquids

248

7.6.2 Hydrocarbon Liquids

251

7.6.3 Hydrocarbon and Other Gases

254

7.6.3.1 Pressurized CO2 for Assessing Interface Quality in Bonded Rubber/Rubber Systems

259

7.6.4 Effects of Temperature and Chemical Fluid Attack

259

7.6.5 Effect of Radiation

261

7.7 Durability of Rubber-Metal Bonds

262

7.7.1 Adhesion Tests

262

7.7.2 Rubber-Metal Adhesive Systems

264

7.7.3 Durability in Salt Water: Role of Electrochemical Potentials

265

7.8 Life Prediction Methodology

267

Acknowledgment.

270

References.

270

Problems for Chapter.7.

272

Answers to Problems for Chapter.7.

275

8 Design of Components

278

8.1 Introduction

278

8.2 Shear and Compression Bearings

280

8.2.1 Planar Sandwich Forms

280

8.2.2 Laminate Bearings

286

8.2.3 Tube Form Bearings and Mountings

288

8.2.4 Effective Shape Factors

293

8.3 Vibration and Noise Control

294

8.3.1 Vibration Background Information

295

8.3.2 Design Requirements

297

8.3.3 Sample Problems

297

8.4 Practical Design Guidelines

306

8.5 Summary and Acknowledgments

307

Nomenclature.

308

References.

309

Problems for Chapter.8.

309

Answers to Problems for Chapter.8.

310

9a Finite Element Analysis

314

9a.1 Introduction

314

9a.2 Material Specification

316

9a.2.1 Metal

316

9a.2.2 Elastomers

317

9a.2.2.1 Linear

317

9a.2.2.2 Non-Linear

322

9a.2.2.2.1 Non-Linear Characteristics

322

9a.2.2.2.2 Non-Linear Material Models

322

9a.2.2.2.3 Obtaining Material Data

323

9a.2.2.2.4 Obtaining the Coefficients

328

9a.2.2.2.5 Mooney-Rivlin Material Coefficients

329

9a.2.3 Elastomer Material Model Correlation

330

9a.2.3.1 ASTM.412 Tensile Correlation

330

9a.2.3.2 Pure Shear Correlation

331

9a.2.3.3 Bi-Axial Correlation

331

9a.2.3.4 Simple Shear Correlation

331

9a.3 Terminology and Verification

332

9a.3.1 Terminology

332

9a.3.2 Types of FEA Models

333

9a.3.3 Model Building

334

9a.3.4 Boundary Conditions

336

9a.3.5 Solution

337

9a.3.5.1 Tangent Stiffness

337

9a.3.5.2 Newton-Raphson

338

9a.3.5.3 Non-Linear Material Behavior

338

9a.3.5.4 Viscoelasticity (See Chapter.4)

338

9a.3.5.5 Model Verification

339

9a.3.6 Results

339

9a.3.7 Linear Verification

341

9a.3.8 Classical Verification – Non-Linear

342

9a.4 Example Applications

344

9a.4.1 Positive Drive Timing Belt

344

9a.4.2 Dock Fender

345

9a.4.3 Rubber Boot

348

9a.4.4 Bumper Design

350

9a.4.5 Laminated Bearing

352

9a.4.6 Down Hole Packer

354

9a.4.7 Bonded Sandwich Mount

356

9a.4.8 O-Ring

358

9a.4.9 Elastomer Hose Model

358

9a.4.10 Sample Belt

359

References.

361

9b Developments in Finite Element Analysis

364

9b.1 Introduction

364

9b.2 Material Models

364

9b.2.1 Hyperelastic Models

365

9b.2.2 Compressibility

369

9b.2.3 Deviations from Hyperelasticity

370

9b.2.3.1 Viscoelasticity

370

9b.2.3.2 Stress-Softening

371

9b.3 FEA Modelling Techniques

372

9b.3.1 Pre- and Post-Processing

372

9b.3.2 Choice of Elements

373

9b.3.3 Convergence

374

9b.3.4 Fracture Mechanics

375

9b.4 Verification

375

9b.4.1 Stresses and Strains

376

9b.4.2 Tearing Energy

377

9b.5 Applications

378

9b.5.1 Load Deflection

378

9b.5.2 Failure

379

References.

381

10 Tests and Specifications

384

10.1 Introduction

384

10.1.1 Standard Test Methods

384

10.1.2 Purpose of Testing

385

10.1.3 Test Piece Preparation

385

10.1.4 Time Between Vulcanization and Testing

386

10.1.5 Scope of This Chapter

386

10.2 Measurement of Design Parameters

386

10.2.1 Young’s Modulus

387

10.2.2 Shear Modulus

389

10.2.3 Creep and Stress Relaxation

391

10.2.3.1 Creep

392

10.2.3.2 Stress Relaxation

393

10.3 Quality Control Tests

393

10.3.1 Hardness

394

10.3.1.1 Durometer

394

10.3.1.2 International Rubber Hardness Tester

395

10.3.2 Tensile Properties

397

10.3.3 Compression Set

399

10.3.4 Accelerated Aging

400

10.3.4.1 Aging in an Air Oven

400

10.3.4.2 Ozone Cracking

401

10.3.5 Liquid Resistance

403

10.3.5.1 Factors in Swelling

403

10.3.5.2 Swelling Tests

404

10.3.6 Adhesion to Substrates

404

10.3.7 Processability

407

10.4 Dynamic Properties

409

10.4.1 Resilience

411

10.4.2 Yerzley Oscillograph

412

10.4.3 Resonant Beam

413

10.4.4 Servohydraulic Testers

414

10.4.5 Electrodynamic Testers

415

10.4.6 Preferred Test Conditions

416

10.5 Tests for Tires

416

10.5.1 Bead Unseating Resistance

417

10.5.2 Tire Strength

418

10.5.3 Tire Endurance

419

10.5.4 High Speed Performance

419

10.6 Specifications

420

10.6.1 Classification System

420

10.6.1.1 Type

421

10.6.1.2 Class

422

10.6.1.3 Further Description

422

10.6.2 Tolerances

425

10.6.2.1 Molded Products

425

10.6.2.2 Extruded Products

427

10.6.2.3 Load-Deflection Characteristics

427

10.6.3 Rubber Bridge Bearings

428

10.6.3.1 Function

428

10.6.3.2 Design Code

429

10.6.3.3 Materials Specification

430

10.6.4 Pipe Sealing Rings

432

10.6.4.1 Function

432

10.6.4.2 Materials

432

10.6.4.3 Tensile Properties

432

10.6.4.4 Compression Set

433

10.6.4.5 Low Temperature Flexibility

433

10.6.4.6 Oven Aging

434

10.6.4.7 Oil Resistance

434

10.6.4.8 Closing Remarks

434

References.

435

Problems for Chapter.10.

438

Answers to Problems for Chapter.10.

439

Appendix: Tables of Physical Constants

442

Index

446

 

© 2009-2024 ciando GmbH