Structure Formation in Polymeric Fibers

David R. Salem

Structure Formation in Polymeric Fibers

2018

580 Seiten

Format: PDF

E-Book: €  239,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446456808

 

Contributors

7

Contents

9

Preface

18

1 Variations on a Theme of Uniaxial Orientation: Introductory Remarks on the Past, Present and Future of Fiber Formation

20

2 Structure Formation During Melt Spinning

24

2.1 Concepts and Theories

26

2.1.1 Introduction

26

2.1.2 An Engineering Analysis of the Process

28

2.2 Experimental Observations and Discussion

48

2.2.1 Polyolefins

48

2.2.2 Polyesters

71

2.2.3. Polyamides

86

2.2.4 Other Homopolymers

94

2.2.5 Copolymers Developed for Specialty Applications

96

2.2.6 Polymer Blends and Bicomponent Fibers

102

2.3 Concluding Remarks

106

Acknowledgments

106

2.4 References

106

3 Advances in the Control of Spinline Dynamics for Enhanced Fiber Properties

114

3.1 Introduction

114

3.2 Moving Beyond Imposed Limits as Take-Up Speeds Increase

114

3.2.1 The Dominant Forces

114

3.2.2 Cooling and Crystallization

118

3.2.3 Transient Effects

120

3.3 Recent Development Efforts and Achievements

122

3.3.1 Theoretical Tensile Strengths and the Potential for Vast Improvements

122

3.3.2 The Ideal One-Step Spinning Process

122

3.3.3 Patented Advances in Fiber Melt Spinning

124

3.4 The Preferred Route to Judicious Control of Spinline Dynamics

128

3.4.1 Judicious Control via Radical Change

128

3.4.2 The Response of Spinline Dynamics

128

3.4.3 Unprecedented As-Spun Fiber Properties

130

3.4.4 The Concept of Extended Chains and Enhanced Molecular Connectivity

132

3.5 Potential Applications and Future Development

134

3.6 References

136

4 Draw-Induced Structure Development in Flexible-Chain Polymers

138

4.1 Introduction

138

4.2 Overview of Stress-Strain-Structure Relationships

140

4.2.1 Modes of Deformation

140

4.2.2 Constant Extension Rate Deformation

142

4.2.3 Constant Force Deformation

152

4.3 Orientation-Induced Crystallization

154

4.3.1 General Concepts

154

4.3.2 The Case of Poly(ethylene terephthalate)

156

4.3.3 Other Polymers

170

4.4 Theory and Modeling

172

4.4.1 Stress-Strain-Orientation Behavior

172

4.4.2 Crystallization

181

4.4.3 Molecular Dynamics Simulations

182

4.5 Morphology

184

4.5.1 Range of Order

184

4.5.2 Three Phase Models

184

4.6 Structure-Property Relationships

186

4.6.1 Tensile Modulus, Strength, Yield, and Elongation at Break

188

4.6.2 Dimensional Stability

190

4.6.3 Penetrant Diffusion

190

4.7 High Performance Fibers

192

4.7.1 Apolar Polymers

192

4.7.2 Polar Polymers

194

4.8 References

198

5 Basic Aspects of Solution(Gel)-Spinning and Ultra-Drawing of Ultra-High Molecular Weight Polyethylene

205

5.1 Introduction

207

5.2 The Ultimate Stiffness and Strength of Flexible Polymers

208

5.2.1 The Ultimate Tensile Modulus

208

5.2.2 The Ultimate Tensile Strength

208

5.2.3 Infinite vs. Finite Chains

208

5.2.4 Chain Alignment, Orientation vs. Extension

210

5.3 Chain Orientation and Chain Extension

214

5.3.1 The Single Chain

214

5.3.2 An Ensemble of Chains

216

5.4 Drawing of Polyethylene in the Solid-State

218

5.4.1 Solid-State Drawing of Polyethylenes

218

5.4.2 Solution(Gel)-Crystallized Polyethylene

220

5.4.3 Solvent-Free Processing of UHME-PE; Nascent Reactor Powders

222

5.4.4 Modeling of the Drawing Behavior

230

5.4.5 Drawing Behavior of Other Polymer Systems

236

5.5 Properties of Polyethylene Fibers, 1-D vs. 3-D

238

5.5.1 Tensile Strength (1-D)

238

5.5.2 Polyethylene Fibers in Composites (3-D)

240

5.5.3 Miscellaneous Properties of UHMW-PE Fibers

240

5.6 Concluding Remarks

240

5. 7 List of Symbols and Abbreviations

242

5.8 References

242

6 Electrospinning and the Formation ofNanofibers

244

6.1 Introduction

245

6.2 Electrospinning Process

246

6.2.1 Jet Initiation and the Diameter of a Single Jet

248

6.2.2 Bending Instability and Elongation of the Jet

248

6.2.3 Diameter of Nanofibers

252

6.2.4 Observations of Electrospinning of Polyethylene oxide Solutions: Length ofthe Straight Segment, Flow Rate of the Solution, Current and Voltage

254

6.3 Nanofibers and Their Unique Properties

256

6.3.1 Beaded Nanofibers

256

6.3.2 Electrospun Poly (p-phenylene terephthalamide)

256

6.3.3 Composites with Nanofiber Reinforcement

258

6.3.4 Elastomeric Poly(styrene-butadiene-styrene) Nanofibers, Phase Miscibility

260

6.3.5 Carbon Nanofibers

260

6.3.6 Nanofibers for Biomedical, Filtration, Agricultural, and Outer-Space Applications

264

6.4 Acknowledgements

264

6.5 References

264

7 Fibers from Liquid Crystalline Polymers

266

7.1 Introduction: Liquid Crystalline Phases

266

7.2 Rheology in Liquid Crystalline Polymers

268

7.3 Fibers from Liquid Crystalline Polymers

273

7.4 Structure Formation and Properties of Liquid Crystalline Polymer Fibers from the Lyotropic Liquid Crystalline State

276

7.4.1 Molecular Parameters, Fiber Spinning, and Heat Treatments

278

7.4.2 PPTA Fiber Structure, Morphology, and Properties

280

7.4.3 PBZT and PBO Fiber Structure, Morphology, and Properties

286

7.5 Structure Formation and Properties of Liquid Crystalline Polymer Fibers from the Isotropic Solution State

290

7.5.1 Molecular Parameters, Fiber Spinning, and Heat Treatments

292

7.5.2 Organo-Soluble Aromatic Polyimide Fiber Structure, Morphology,and Properties

294

7.5.3 Technora Fiber Structure, Morphology, and Properties

300

7.6 Structure Formation and Properties of Liquid Crystalline Polymer Fibers from the Thermotropic State

302

7.6.1 Molecular Parameters, Fiber Spinning, and Heat Treatments

302

7.6.2 HBA/PET Copolyester Fiber Structure, Morphology, and Properties

304

7.6.3 HBA/HNA Copolyester Fiber Structure, Morphology, and Properties

307

7.6.4 Ekonol® Copolyester Fiber Structure, Morphology, and Properties

308

7.7 Concluding Remarks

308

7.8 References

308

8 Solvent Spun Cellulose Fibers

316

8.1 Structure and Properties

316

8.1.1 Introduction

316

8.1.2 Cellulose Structure

316

8.2 Fiber Formation

320

8.2.1 Introduction

320

8.2.2 Liquid Crystalline State

326

8.2.3 Direct Dissolution of Cellulose

328

8.2.4 Fiber Extrusion and Properties

340

8.3 Concluding Remarks

344

8.4 References

344

9 Carbon Fibers

349

9.1 Formation and Structure

349

9.1.1 Introduction

349

9.1.2 Carbon Fibers from PAN Precursors

350

9.1.3 Carbon Fibers from Pitch Precursors

356

9.2 Structure and Properties

358

9.2.1 Tensile Modulus

358

9.2.2 Tensile and Compressive Strength

358

9.2.3 The Structure of Carbon Fibers

360

9.2.4 Failure Mechanisms

368

9.2.5 Disorder in Carbon Fibers

372

9.2.6 Structure-Property Relations

374

9.3 References

376

10 Fibers from Electrically Conductive Polymers

378

10.1 Introduction

378

10.1.1 Polymer Conductivity

380

10.1.2 Measurement of Polymer Conductivity

386

10.1.3 Processing of Conductive Polymers

388

10.1.4 Fiber Formation

392

10.2 Fiber Formation from Emeraldine Base Polyaniline

392

10.2.1 Solution Spinning of Emeraldine Base Fiber

396

10.2.2 PANI Fiber Properties

404

10.2.3 Viscoelastic Characterization of PANI Spin Dopes

406

10.2.4 Thermal Characteristics of LEB PANI Fibers

412

10.3 Conclusion

412

10.4 Future Trends

414

10.5 References

414

11 Fibers from Polymer Blends and Copolymers

416

11.1 Introduction

416

11.2 Polymer Blends

418

11.2.1 Introduction

418

11.2.2 Miscibility

418

11.2.3 Multi-Phase Blends

420

11.2.4 Blends of Thermoplastics and Thermotropic Liquid Crystalline Polymers

420

11.3 Bicomponent Fibers

422

11.4 Fibers from Polymer Blends

424

11.5 Thermoplastic Fibers Reinforced with Thermotropic Liquid Crystalline Polymers

426

11.5.1 Fibers Produced via Simultaneous Melting of Blend Components

426

11.5.2 Fibers Generated Using the Dual Extrusion Process

428

11.5.3 Post Processing of Fibers Generated Using the Dual Extrusion Process

437

11.6 Copolymers

438

11.7 Elastomeric Fibers

440

11.8 References

442

12 Thermomechanical Processing: Structure and Properties

444

12.1 Introduction

444

12.2 Commercial Practice*

446

12.2.1 General Comments

446

12.2.2 Consumer Textiles

446

12.2.3 Tire Cord and Other Industrial Applications

450

12.3 Phenomenology of Thermomechanical Treatments

452

12.3.1 Mechanical Behavior During Processing; Creation of Internal Stress; Heat-Setting

452

12.3.2 The Development of Orientation of the Crystalline and Amorphous Substituents

460

12.4 Fiber Structure

460

12.4.1 Basic Structure

460

12.4.2 Crystal Transformation During Heat-Treatment

462

12.4.3 The Oriented Mesophase

462

12.5 Kinetics of Structure Development During Heat-Treatment

464

12.5.1 Effect of Orientation on the Crystallization Rate

464

12.5.2 In Situ Studies

466

12.5.3 Treat and Quench Investigations

466

12.6 Some Final Remarks

472

12.7 References

474

13 Microstructure Characterization

476

13.1 Wide Angle X-Ray Diffraction Analysis of Fibers

476

13.1.1 Introduction

476

13.1.2 Degree of Crystallinity

478

13.1.3 Degree of Orientation

480

13.1.4 Crystallite Size

480

13.1.5 Crystal Structure Determination

482

13.1.6 Aperiodic Scatter from Fibers of Random Copolymers

484

13.1.7 Transesterification in Blends of Copoly(HBA/HNA)

488

13.1.8 Non-Linearity and Distortions

490

13.1.9 References

492

13.2 Small-Angle Scattering

494

13.2.1 Introduction

494

13.2.2 Characteristics of SAS

496

13.2.3 Instrumentation

498

13.2.4 Data Analysis

499

13.2.5 Applications

504

13.2.6 Concluding Remark

511

13.2.7 References

511

13.3 Density, Birefringence, and Polarized Fluorescence

512

13.3.1 Crystallinity from Density

512

13.3.2 Molecular Orientation from Birefringence

514

13.3.3 Molecular Orientation from Polarized Fluorescence

516

13.3.4 References

524

13.4 Spectroscopic Methods: Infrared, Raman, and Nuclear Magnetic Resonance

526

13.4.1 Introduction

526

13.4.2 Infrared

528

13.4.3 Raman

532

13.4.4 Nuclear Magnetic Resonance

534

13.4.5 References

538

14 Fiber Formation and the Science of Complexity

540

14.1 Introduction

540

14.2 A Historical Account of Structural Complexity

542

14.2.1 The Early Fringed Micelle Models

542

14.2.2 The Common Working Model

548

14.2.3 Alternative Continuous Models

552

14.2.4 Other Complexities

554

14.3 The Science of Complexity

556

14.3.1 Far-from-Equilibrium

556

14.3.2 Characterizing Structure: Computer Graphics

556

14.3.3 Polymer Dynamics

558

14.3.4 Fractals

560

14.3.5 Kinetics of Nonhomogeneous Processes

560

14.3.6 Nonlinear Irreversible Thermodynamics

562

14.3.7 Chaos Theory

562

14.4 The Possible Role of Quantum Theory

564

14.4.1 Quantum Effects

564

14.4.2 Melt-Spun Fiber Formation

566

14.4.3 Clusters and Quantized Energy Levels

566

14.5 Conclusion: Scientific and Engineering Opportunity

568

14.6 References

570

Index

573

 

© 2009-2024 ciando GmbH