The Complete Part Design Handbook - For Injection Molding of Thermoplastics

E. Alfredo Campo

The Complete Part Design Handbook

For Injection Molding of Thermoplastics

2013

100 Seiten

Format: PDF

E-Book: €  349,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446412927

 

Dedication

6

Preface

8

Contents

10

1 Polymeric Materials

24

1.1 Introduction to Plastic Materials

24

1.1.1 Beginning of Plastics

24

1.1.2 Polymer Families

26

1.2 Thermoplastic Polymers

27

1.2.1 Classification of Polymers by Performance

27

1.2.2 Molecular Structure of Plastic Materials

29

1.2.3 Acrylonitrile-Butadiene-Styrene (ABS)

29

1.2.4 Acetal (POM, Polyacetal)

32

1.2.5 Polymethyl Metacrylate (Acrylic, PMMA)

35

1.2.6 High Temperature Nylon (HTN)

37

1.2.7 Ionomer Polymers

39

1.2.8 Liquid Crystal Polymer (LCP)

41

1.2.9 Polyamide (PA, Nylon)

43

1.2.10 Polyetherimide (PEI)

46

1.2.11 Polyarylate (PAR)

48

1.2.12 Polyetherether Ketone (PEEK)

50

1.2.13 Polycarbonate (PC)

51

1.2.14 Modified Polyphenylene Oxide (PPO)

54

1.2.15 Polybutylene Terephthalate (PBT)

56

1.2.16 Polyethylene Terephthalate (PET)

57

1.2.17 Polyethylene (PE)

59

1.2.18 Polytetrafluoroethylene (PTFE)

62

1.2.19 Polyphenylene Sulfi de (PPS)

67

1.2.20 Polypropylene (PP)

69

1.2.21 Polystyrene (PS)

71

1.2.22 Polysulfone (PSU)

72

1.2.23 Polyvinyl Chloride (PVC)

74

1.2.24 Styrene Acrylonitrile (SAN)

76

1.3 Thermoplastic Elastomers (TPE)

78

1.3.1 Thermoplastic Elastomer Families

79

1.3.2 Thermoplastic Polyurethane Elastomer (TPU)

80

1.3.3 Styrenic Block Copolymer (SBS)

83

1.3.4 Polyolefin Thermoplastic Elastomer (TPO)

85

1.3.5 Elastomeric Alloy Thermoplastic Vulcanized (TPV).

88

1.3.6 Melt Processible Rubber (MPR)

92

1.3.7 Copolyester Thermoplastic Elastomer

94

1.3.8 Polyamide Thermoplastic Elastomer

98

1.4 Liquid Injection Molding Silicone (LIM®)

100

1.4.1 LIM® Silicone Processing

102

1.5 Thermoset Polymers

105

1.5.1 Polyester Alkyd (PAK)

106

1.5.2 Diallyl Phthalate/Isophthalate (DAP, DAIP)

108

1.5.3 Melamine Formaldehyde (MF)

110

1.5.4 Cellulosic Ester

111

1.5.5 Cyanate

112

1.5.6 Epoxy (EP)

115

1.5.7 Phenol Formaldehyde (Phenolic, PF)

117

1.5.8 Polybutadiene (PB)

120

1.5.9 Bismaleimide (BMI)

120

1.5.10 Unsaturated Polyester (UP)

121

1.5.11 Polyimide (PI)

124

1.5.12 Polyxylene

126

1.5.13 Polyurethane (PUR)

127

1.5.14 Silicone (SI)

130

1.5.15 Urethane Hybrid

132

1.5.16 Vinyl Ester (BPA)

134

2 Engineering Product Design

138

2.1 Understanding the Properties of Materials

138

2.1.1 Plastics Selection Guidelines

140

2.2 Structural Design of Thermoplastic Components

143

2.2.1 Stress-Strain Behavior

144

2.2.2 Tensile Testing of Viscoelastic Materials

145

2.3 Mechanical Properties of Materials

149

2.4 Tension and Compression Curves

152

2.5 Modulus of Elasticity (E)

152

2.6 Stress and Strain Analysis

153

2.7 Thermoplastics Elastic Design Method

154

2.7.1 Working Stress

155

2.7.2 Compressive Stress

156

2.7.3 Flexural Stress

157

2.7.4 Coefficient of Linear Thermal Expansion (?)

158

2.7.5 Poisson’s Ratio (?)

159

2.7.6 Moisture Effects on Nylon

159

2.7.7 Effects of Temperature on the Behavior of Thermoplastics

160

2.8 Stress-Strain Recovery (Hysteresis)

161

2.8.1 Creep Behavior of Thermoplastics

161

2.8.2 Creep and Rupture Under Long-Term Load

162

2.8.3 Creep and Relaxation of Thermoplastics

162

2.9 Flexural Beam Stress Distribution

168

2.10 Viscoelastic Modulus Design Method

170

2.11 Centroid, Section Area, and Moment of Inertia

173

2.12 Radius of Gyration

181

2.13 Stress Analysis of Beams

181

2.13.1 Types of Loads

181

2.13.2 Normal Stresses in Beams

182

2.13.3 Shearing Force

187

2.14 Beam Deflection Analysis

191

2.14.1 Beam Deflection by Double Integration Method

192

2.14.2 Beam Deflection Moment Area Method

201

2.14.3 Applications of Moment Area and Double Integration Methods

202

2.14.4 Beam Deflection Superposition Method

206

2.15 Column Structural Analysis

211

2.15.1 Long Slender Column Critical Load (PCr)

211

2.15.2 Column Slenderness Ratio (L / r)

211

2.15.3 Eccentrically Loaded Columns

211

2.16 Flat Circular Plates

217

2.16.1 Classification

218

2.16.2 Stress Analysis Methods

218

2.16.3 Flat Circular Plate Equations

219

2.16.4 Flat Circular Plate Stresses

220

2.16.5 Theory of Flexure Comparison

221

2.16.6 Circular Plates Simply Supported, Concentrated center Load

221

2.16.7 Flat Circular Plate under Concentrated Center Load

222

2.16.8 Flat Circular Plate with Fixed Edge

222

2.16.9 Flat Circular Plate Compensation Factor for Deflection

223

2.16.10 Flat Circular Plate Bending under Edge Boundaries

223

2.17 Torsion Structural Analysis

230

3 Structural Designs for Thermoplastics

234

3.1 Uniform and Symmetrical Wall Thickness

234

3.1.1 Part Geometries Difficult to Mold

235

3.1.2 Wall Draft Angle per Side

236

3.2 Structural Rib Design

236

3.2.1 Rib Strength Analysis Method

238

3.3 Internal Sharp Corners and Notches

245

3.4 Injection Molded Thermoplastic Bosses

245

3.5 Injection Molded Thermoplastic Threads

247

3.6 Collapsible Core for Molding Internal Threads

247

3.7 Preferred Standard Thread Forms for Thermoplastics

248

3.7.1 Thermoplastic Threads Creep Effects

250

3.8 Injection Molded Products with Undercuts

250

3.9 Injection Molded Integral Life Hinges

255

3.9.1 Injection Molded Integral Life Hinge Design

256

3.9.2 Mold Design Considerations for Hinges

258

3.9.3 Proper Gate Design for Life Hinges

259

3.10 Conventional Types of Pin Hinges

260

3.11 Metal Inserts for Thermoplastic Encapsulation

262

3.11.1 Machined Metal Threaded Insert Tolerances

263

3.11.2 Thermoplastic Boss Wall Thickness for Metal Inserts

263

3.11.3 Press/Lock Slotted Metal Insert Installation After Molding

265

3.11.4 Cold Forged Metal Inserts for Encapsulation

266

3.11.5 Threaded Female Metal Inserts

267

3.11.6 Metal Inserts Anchorage for ThermoplasticEncapsulation

269

3.11.7 Metal Insert Encapsulating Process Problems

272

3.11.8 Special Metal Inserts Anchorage for Encapsulation

273

3.11.9 Electrical Lead Inserts for Encapsulation

276

3.11.10 Inserts Preparation for Molding Encapsulation

278

4 Thermoplastic Gearing Design

280

4.1 Classification of Gears

281

4.1.1 Gears Parallel to the Shaft Axis

281

4.1.2 Bevel Gears, Nonparallel and Intersecting Shafts

282

4.1.3 Hypoid Gears, Nonparallel and Nonintersecting Shafts

284

4.1.4 Gears for Straight Linear Motion

285

4.2 Standard Injection Molded Thermoplastic Gears

286

4.2.1 Selection of Thermoplastic Resins for Gears

287

4.2.2 Horsepower Equations for Gears

289

4.2.3 Spur Gear Terminology and Definitions

291

4.3 Properties Required for Injection Molded Thermoplastic Gears

295

4.4 Thermoplastic Spur Gear Design Requirements

296

4.4.1 Gating Effects on Thermoplastic Gear Roundness Dimensions

298

4.4.2 Multifunction Designs with Thermoplastic Gears

300

4.4.3 Mounting Thermoplastic Gears on Metal Shafts

302

4.4.4 Standard Spur Gears, Equations, and Calculations

302

4.4.5 Spur Gear Pitch Backlash

304

4.4.6 Standard Spur Gear Tooth Size Selection

305

4.4.7 Standard Gear Total Composite Tolerances

306

4.5 Tolerances and Mold Shrinkage of Thermoplastic Gears

310

4.6 Standard Helical Gears

312

4.7 Standard Straight Bevel Gears

313

4.8 Standard Worm Gears

315

4.8.1 Standard Worm Gear Analysis

316

4.10 Plastic Gearing Technology Designs

317

4.10.1 Spur and Helical Gears PGT-1 Tooth Design

318

4.10.2 Spur and Helical Gears PGT-2 Tooth Design

320

4.10.3 Spur and Helical Gears PGT-3 Tooth Design

321

4.10.4 Spur and Helical Gears PGT-4 Tooth Design

322

4.10.5 Plastic Gearing Technology Tooth Form Design Variables

323

4.10.6 Maximum Allowable Outside Diameter DO (Max.)

325

4.10.7 Spur Gear Tooth Form Comparison

326

4.10.8 Mating Spur Gears Tooth Form Comparison

327

4.10.9 PGT Spur Mating Gears Strength Balance

328

4.10.10 PGT Close Mesh Center Distance Between Spur Gears

331

4.10.11 Maximum Close Mesh Center Distance

332

4.11 PGT Helical Thermoplastic Gearing

337

4.11.1 PGT-1 Helical Mating Gears Strength Balance

342

4.11.2 PGT-1 Helical Mating Gears Center Distance

345

4.12 PGT Spur and Helical Gears Horsepower Rating

346

4.12.1 PGT Gear Horsepower Equation Basic Parameters

347

4.13 PGT Spur and Helical Gear Specifications

351

5 Plastic Journal Bearing Design

358

5.1 Introduction

358

5.2 Materials Used for Journal Bearings

358

5.2.1 Babbitt Journal Bearings

359

5.2.2 Bronze Journal Bearings

359

5.2.3 Sintered Porous Metal Journal Bearings

359

5.2.4 Plugged Bronze Journal Bearings

359

5.2.5 Carbon-Graphite Journal Bearings

360

5.2.6 Cast-iron Journal Bearings

360

5.2.7 Wooden Journal Bearings

360

5.2.8 Rubber Journal Bearings

360

5.2.9 Self-Lubricated Thermoplastic Journal Bearings

361

5.3 Hydrodynamics of Lubrication

362

5.4 Journal Bearings Design for Lubrication

365

5.5 Journal Bearing Design Principles

368

5.5.1 Journal Bearing Nomenclature and Equations

368

5.5.2 Thermoplastic Journal Bearing Axial Wall Thickness

370

5.5.3 Mounting Thermoplastic Journal Bearings

370

5.6 Split Bushing Thermoplastic Journal Bearings

371

5.7 Self-Centering Thermoplastic Journal Bearings

371

5.8 Journal Bearing Load Carrying Contact Surface (C)

373

5.9 Load Reaction Across the Length of Thermoplastic Bearing

373

5.10 Injection Molded Journal Bearings Process Defects

374

5.11 Factors Affecting Journal Bearing Performance

375

5.12 Factors Affecting Journal Bearing Dimensions

376

5.12.1 Length-to-Inside Diameter Ratio of Journal Bearings

377

5.12.2 Types of Service and Motion of Journal Bearings

377

5.12.3 Thermoplastic Journal Bearing Annealing Effects

377

5.12.4 Acetal Homopolymer Moisture Absorption Effects

378

5.12.5 TFE and Nylon 6/6 Moisture Absorption Effects

378

5.12.6 Temperature Effects on Thermoplastic Journal Bearings

379

5.12.7 Thermal Effects on Thermoplastic Journal Bearing Clearances

380

5.13 Journal Bearing Pressure-Velocity (PV) Limits

381

5.13.1 Methods to Determine the PV Limits of Plastics

382

5.13.2 Journal Bearing Coefficient of Friction

382

5.13.3 Journal Bearing Failures Due to Small Clearances

383

5.13.4 Definition of Different Types of Wear

384

5.14 Mating Material Hardness and Surface Finishing

385

5.15 Self-Lubricated Thermoplastic Journal Bearings

386

5.15.1 Vespel® Polyimide Bearings

389

5.15.2 Journal Bearing Pressure Equation

390

5.15.3 Vespel® Wear Factor Effects Caused by Temperature

391

5.15.4 Vespel® Wear Transition Temperature

392

5.15.5 Frictional Behavior of Vespel®

392

5.15.6 Vespel® Journal Bearings Length to Inside Diameter Ratio

393

5.15.7 Vespel® Thrust Bearing Ratio Between Diameters

393

5.15.8 Vespel® Journal Bearing Initial Clearance (cI)

393

5.15.9 Vespel® Journal Bearing Inside Diameter (dB)

394

5.16 Teflon® (TFE) Fabric Composite Bearings

396

5.16.1 Bearing Physical Properties

397

5.16.2 Bearing PV Limit Rating

397

5.16.3 Journal Bearing Clearances (c)

398

5.17 Thermoplastic Kevlar® Reinforced Bearings

398

6 Thermoplastic Molded Spring Design

400

6.1 Introduction

400

6.2 Thermoplastic Molded Spring Design Considerations

401

6.3 Thermoplastic Helical Compression Springs

401

6.4 Thermoplastic Molded Cantilever Beam Springs

402

6.5 Cantilever Beam Spring Design Analysis

404

6.5.1 Initial Modulus of Elasticity Cantilever Beam Analysis Method

404

6.5.2 Stress-Strain Curve Cantilever Beam Analysis Method

404

6.5.3 Empirical Data Cantilever Spring Analysis Method

405

6.6 Thermoplastic Cantilever Spring Applications

408

6.7 Thermoplastic Belleville Spring Washers

411

6.7.1 Acetal Homopolymer Belleville Spring Washer Analysis

412

6.7.2 Belleville Spring Washer Loading Rate

415

6.7.3 Belleville Spring Washer Long-Term Loading Characteristics

415

7 Thermoplastic Pressure Vessel Design

416

7.1 Thermoplastic Thin-Walled Pressure Vessels

416

7.2 Thin-Walled Cylinder Basic Principles

417

7.3 Thick-Walled Pressure Vessels

419

7.3.1 Lame’s Equation for Thick-Walled Cylinders

419

7.3.2 Maximum Stresses with Internal and External Pressures

421

7.3.3 Maximum Stresses for Internal Pressure Only

421

7.4 Designing Cylinders for Cost Reduction

423

7.5 Thermoplastic Pressure Vessels Design Guidelines

423

7.5.1 Preliminary Pressure Vessel Design

423

7.6 Testing Prototype Thermoplastic Pressure Vessels

425

7.6.1 Redesign and Retesting the Pressure Vessels

425

7.7 Pressure Vessel Regulations

425

7.7.1 ASME Pressure Vessel Code

426

8 Thermoplastic Assembly Methods

428

8.1 Introduction

428

8.2 Cold Heading Method

428

8.2.1 Cold Heading Procedure and Equipment

429

8.3 Electro Fusion Fitting System

431

8.3.1 The SEF-System

432

8.4 Hot Plate Welding Method

433

8.4.1 Hot Plate Welding Joint Design

435

8.4.2 Flash or Weld Bead

436

8.5 Solvent and Adhesive Bonding Methods

436

8.5.1 Solvents Used to Bond Thermoplastic Polymers

437

8.6 Adhesive Bonding Method

439

8.6.1 Adhesive Families

439

8.6.2 Adhesive Concerns

442

8.6.3 Adhesives Bonding Selection

443

8.6.4 Ultra Violet Curable Adhesives

444

8.6.5 Adhesive Surface Preparation

447

8.6.6 Adhesive Application and Curing Methods

448

8.6.7 Joint Design for Adhesive Bonding

448

8.7 Metal Fasteners Method

450

8.7.1 Thermoplastic Bosses and Self-Tapping Screws

452

8.7.2 Thread Forming and Thread Cutting Screws

453

8.8 Press Fitting Method

460

8.8.1 Press Fitting Interference

462

8.8.2 Circular Press Fitting Assembly Method

464

8.9 Snap Fitting Methods

467

8.9.1 Circular Undercut Snap Fitting Joints

468

8.9.2 Suggestions for Stripping Circular Undercut Snap Fitting

469

8.9.3 Cantilevered Latch Snap Fitting Joint

470

8.9.4 Cantilever Snap Fit Latch Design Guidelines

472

8.9.5 Cantilever Latch Snap Fit Mathematical Model

473

8.9.6 Cantilever Snap Latch Beam Permissible Deflection (?)

475

8.9.7 Cantilever Latch Beam Assembly Force (W)

476

8.9.8 Design and Material Considerations

477

8.9.9 Uniform Cross Section Cantilever Beam

477

8.9.10 Tapered Cross Section Cantilever Beam

478

8.10 Electromagnetic Welding Method

481

8.10.1 Electromagnetic Welding Process

482

8.10.2 Electromagnetic Welding Coil Design

483

8.10.3 Electromagnetic Welding Joint Design

486

8.10.4 Available Welding Gasket Shapes and Forms

487

8.11 Vibration Welding Method

488

8.11.1 High Frequency Vibration Welding

488

8.11.2 Vibration Welding Modes

489

8.11.3 Comparing Vibration Welding to Other Assembly Methods

492

8.11.4 Vibration Welding Equipment

494

8.11.5 Vibration Welding Joint Design

495

8.11.6 Vibration Welding Aligning and Fixturing

496

8.11.7 Vibration Welding Tolerances

497

8.11.8 Vibration Welding Equipment

497

8.12 Spin Welding Method

499

8.12.1 Applications

499

8.12.2 Basic Spin Welding Equipment

499

8.12.3 Spin Welding Variables

500

8.12.4 Types of Spin Welding Processes

500

8.12.5 Spin Welding Joint Designs

503

8.12.6 Spin Welding Process Suggestions

503

8.13 Ultrasonic Welding Method

505

8.13.1 Ultrasonic Welding Basic Principles

505

8.13.2 Ultrasonic Welding Basic Components

506

8.13.3 Ultrasonic Welding Equipment

506

8.13.4 Ultrasonic Welding Process Variables

510

8.13.5 Ultrasonic Welding Joint Designs

512

8.13.6 Ultrasonic Welding Energy Director Butt Joint

515

8.13.7 Ultrasonic Welding Method Design Limitations

517

8.13.8 Weldability of Thermoplastic Materials

519

8.13.9 Effects Caused by Thermoplastic Additives on Ultrasonic Welding

520

8.14 Ultrasonic Insertion

523

8.14.1 Applications

523

8.14.2 Ultrasonic Insertion Configurations

524

8.14.3 Ultrasonic Insertion Product Design

525

8.14.4 Ultrasonic Insertion Equipment Requirements

525

8.14.5 Ultrasonic Insertion Process Guidelines

526

8.15 Ultrasonic Stud Staking Method

526

8.15.1 Ultrasonic Stud Staking Joint Design

526

8.16 Ultrasonic Stud Heading Method

529

8.16.1 Thermoplastic Stud Profiles for Ultrasonic Heading

529

8.17 Ultrasonic Spot Welding Method

532

8.17.1 Hand-Held Ultrasonic Spot Welder

533

9 Thermoplastic Effects on Product Design

534

9.1 Polymer Melt Behavior

534

9.1.1 Thermoplastics Glass Transition Temperature

536

9.2 General Characteristics of Polymers

536

9.2.1 Critical Properties of Thermoplastics

537

9.3 Polymer Reinforcements

538

9.3.1 Types of Fiber Reinforcements

539

9.3.2 Isotropic Warpage of Fiber Reinforced Resins

540

9.3.3 Fiber Glass Reinforcement Limitations

540

9.3.4 Injection Molding Process Effects on Fiber Glass Orientation

540

9.3.5 Tensile Stress Effects Caused by Fiber Glass Orientation

541

9.3.6 Flexural Modulus Effects Caused by Fiber Glass Orientation

542

9.4 Chemical and Environmental Resistance

543

9.4.1 Effects of the Environment

544

9.5 Types of Degradations

545

9.5.1 Oxidative Degradation

545

9.5.2 Radiation Degradation

545

9.5.3 Photo Oxidation

545

9.5.4 Mechanical Degradation

545

9.5.5 Microbial Degradation

546

9.6 Moisture Effects on Nylon Molded Parts

546

9.7 Aqueous Potassium Acetate for Moisture Conditioning Nylon

550

9.8 Injection Molding Cycles

551

9.9 Mold Cavity Surface Temperature

552

9.10 Mold Cavity Temperature Control

553

9.10.1 Mold and Post-Mold Shrinkage

554

9.11 Process Condition Effects on Mold Shrinkage

556

9.12 Post-Mold Shrinkage

561

9.13 Weld Lines

564

10 Injection Mold Design

568

10.1 Classification of Injection Molds

568

10.2 Effects of Product Design on the Injection Molding Process

569

10.2.1 Uniform Wall Thickness

570

10.2.2 Balance Geometrical Configuration

570

10.2.3 Smooth Internal Sharp Corners

570

10.2.4 Draft Walls

570

10.2.5 Feather Edges

570

10.2.6 Proportional Boss Geometries

571

10.2.7 Gate Type and Location

571

10.2.8 Molded Product Ejection Surface Area

571

10.2.9 Molded Product Tolerances

571

10.2.10 Surface Finish of Molded Product

572

10.3 Effects of Mold Design on the Injection Molding Process

572

10.3.1 Runner System

572

10.3.2 Mold Cooling System

572

10.3.3 Ejector System

573

10.3.4 Mold Venting

573

10.3.5 Other Mold Devices

573

10.4 Design Considerations for Injection Molds

573

10.4.1 Preliminary Mold Design

574

10.4.2 Detailed Mold Design

575

10.5 Types of Steels Required for Injection Molds

576

10.5.1 Major Steel Families

576

10.6 Steels for Thermoplastic Injection Molds

580

10.6.1 General Steel Selection Procedures

581

10.6.2 Properties and Characteristics of Tool Steels

582

10.6.3 Effects of Alloying Elements on Tool Steel Properties

582

10.6.4 Chemical Composition of Steels Used for Molds

582

10.6.5 Effects of Alloying on Tool Steels

583

10.6.6 Effects of Heat Treatment on Tool Steel Properties

585

10.6.7 Prehardened Tool Steels

587

10.6.8 Carburizing Tool Steels

589

10.6.9 Oil and Air Hardening Tool Steels

590

10.6.10 Stainless Steels

591

10.6.11 Steels Used in Thermoplastic Injection Mold Components

592

10.7 Mold Cavity Surface Finishing

594

10.7.1 Mold Surface Finishing Process Procedures

596

10.8 Thermoplastic Injection Mold Bases

601

10.8.1 Standard Mold Base Components

601

10.8.2 Functions of the Mold Base Components

602

10.8.3 Types of Standard Mold Bases

605

10.9 Types of Thermoplastic Injection Molds

606

10.9.1 Two-Plate Molds

607

10.9.2 Round Mate® Interchangeable Insert Molds

608

10.9.3 Master Unit Die Interchangeable Insert Molds

608

10.9.4 Three-Plate Mold Cold Runner System

609

10.9.5 Vertical Insert Mold for Thermoplastic Encapsulations

610

10.9.6 Hot Runner Molding Systems

611

10.9.7 Hot Runner Mold Temperature Control Systems

612

10.9.8 Hot Runner Mold Gates (Drops)

613

10.9.9 Types of Hot Runner Molding Systems

616

10.9.10 Thermoplastic Stack Injection Molds

624

10.9.11 Lost Core Thermoplastic Injection Molds

625

10.10 Number of Mold Cavities

629

10.10.1 Cavity Number Limitations

629

10.10.2 Number of Mold Cavities Equation

629

10.11 Mold Parting Line

630

10.11.1 Flat Mold Parting Line

630

10.11.2 Non-Flat Mold Parting Line

631

10.11.3 Balancing of Mold Parting Line Surfaces

633

10.12 Mold Ejection Systems

633

10.12.1 Ejector Plate Assembly

634

10.12.2 Ejector Plate

634

10.12.3 Retaining Plate

634

10.12.4 Ejector Sleeves

634

10.12.5 Types of Mold Ejection Systems

635

10.13 Injection Mold Cooling

638

10.13.1 Mold Temperature Control

639

10.13.2 Factors Affecting Mold Cooling

640

10.13.3 Effects Caused by Elevated Mold Temperature

640

10.13.4 Effects Caused by Too Low a Mold Temperature

641

10.13.5 Mold Heat Transfer Methods

641

10.13.6 Mold Cavity Insert Cooling

654

10.14 Injection Molding Machine Nozzle

662

10.14.1 Mold Cold Runner System

662

10.14.2 Determining the Injection Pressure Needed

676

10.14.3 Cold Runner Flow Tab

677

10.15 Mold Cavity Gating

678

10.15.1 Types of Mold Cavity Gates

679

10.15.2 Different Types of Hot Runner Gates

686

10.16 Gate Molding Effects

687

10.17 Mold Venting Systems

689

10.17.1 Product Design for Venting

690

10.17.2 Venting Characteristics of Thermoplastic Polymers

692

10.17.3 Mold Deposit Problems

692

10.17.4 How to Avoid Venting Problems

693

10.17.5 Planning Mold Venting

694

10.17.6 Mold Venting Process Problems

695

10.17.7 Mold Venting Design

697

10.17.8 Mold Venting Using Sintered Porous Insert Plugs

713

10.17.9 Logic Seal (Negative Coolant Pressure) Mold Venting

714

10.17.10 Mold Cavity Vacuum Venting System

716

10.18 Mold Cavity Insert Contact Area Strength

721

10.18.1 Cavity Insert Sidewall Strength

722

10.18.2 Methods to Calculate the Strength of Cavity Insert Sidewall

723

10.19 Mold Layout Case Studies

727

10.20 Mold Support Pillars

728

10.21 Tolerances for Thermoplastic Molded Parts

728

10.21.1 Factors Affecting Dimensional Control Tolerances

730

10.22 General Specifications for Mold Construction for Thermoplastic Injection Molding Resins

732

10.22.1 Mold Design Requirements

732

10.22.2 Mold Drawing Standards

732

10.22.3 Required Types of Tool Steels for Mold Construction

734

10.22.4 Mold Construction Requirements

736

10.23 Mold Tryout – Debug – Approvals – “MQ1” Requirements

743

10.23.1 Mold Tryout or Evaluation

743

10.23.2 Mold Debug Procedures

743

10.23.3 Approval of Molded Parts and Pre-Production Molding Process

743

10.23.4 Mold Cavity and Core Surface Temperatures

743

10.23.5 “MQ1” Requirements

744

11 Performance Testing of Thermoplastics

746

11.1 Property Data Sheet for Thermoplastics

747

11.2 Tensile Testing (ASTM D-638)

748

11.2.1 Tensile Testing Equipment

748

11.2.2 Tensile Test Specimen

749

11.2.3 Specimen Conditioning

749

11.2.4 Tensile Strength Test Procedures

749

11.2.5 Tensile Modulus and Elongation

750

11.2.6 Molecular Orientation Effects

751

11.2.7 Crosshead Speed Effects

752

11.2.8 Temperature Effects

752

11.2.9 Moisture Absorption Effects

752

11.2.10 Stress-Strain Effects Caused by Creep

753

11.3 Flexural Testing (ASTM D-790)

753

11.3.1 Apparatus

754

11.3.2 Test Procedures and Equations

755

11.3.3 Modulus of Elasticity

756

11.4 Compressive Strength Testing (ASTM D-695)

756

11.4.1 Compressive Testing Apparatus

757

11.4.2 Test Specimens and Conditioning

757

11.4.3 Test Procedures

757

11.4.4 Stress-Strain Tension and Compression Curves

758

11.5 Shear Strength Testing (ASTM D-732)

758

11.5.1 Test Specimen and Apparatus

758

11.5.2 Test Procedures

759

11.5.3 Significance and Limitations

759

11.6 Surface Hardness Testing

759

11.6.1 Rockwell Hardness Testing (ASTM D-785-60T)

760

11.6.2 Barcol Hardness Testing (ASTM D-2583)

762

11.6.3 Factors Affecting the Test Results

763

11.7 Abrasion Resistance Testing (ASTM D-1044)

763

11.7.1 Taber Abrasion Testing

764

11.7.2 Theoretical Analysis of Wear

764

11.8 Coefficient of Friction (ASTM D-1894)

765

11.8.1 Coefficient of Friction of Thermoplastic Materials

766

11.8.3 Effects of Lubricants

767

11.9 Mold Shrinkage Test (ASTM D-955)

767

11.9.1 Purpose of the Mold Shrinkage Test

767

11.9.2 Factors Affecting Mold Shrinkage

768

11.9.3 Injection Molding Effects on Shrinkage

768

11.9.4 Requirements for Sampling

768

11.9.5 Test Procedures

769

11.10 Specific Gravity Testing (ASTM D-792)

771

11.10.1 Test Procedures

772

11.11 Density Gradient Testing (ASTM D-1505)

773

11.12 Water Absorption Testing (ASTM D-570)

773

11.12.1 Test Specimen

774

11.12.2 Test Procedure

774

11.13 Impact Resistance Testing

774

11.13.1 Pendulum Impact Tests

776

11.13.2 Charpy Impact Testing (ASTM D-256)

778

11.13.3 Chip Impact Testing

778

11.13.4 Tensile Impact Testing (ASTM D-1822)

778

11.13.5 Drop Weight Impact Testing (ASTM D-3029)

779

11.13.6 Falling Weight Impact Testing

780

11.13.7 Instrumented Impact Testing

781

11.14 Creep, Rupture, Relaxation, and Fatigue

784

11.14.1 Tensile Creep Testing

784

11.14.2 Flexural Creep Testing

785

11.14.3 Procedure for Applying Creep Modulus

787

11.15 Melting Point Test (ASTM D-795)

790

11.16 Vicat Softening Point (ASTM D-1525)

790

11.16.1 Melting Point, Glass Transition Temperature

791

11.17 Brittleness Temperature (ASTM D-746)

791

11.17.1 Test Apparatus and Procedures

791

11.18 UL – Temperature Index

793

11.18.1 Relative Thermal Indices

793

11.18.2 Long Term Thermal Aging Index

795

11.18.3 Creep Modulus/Creep Rupture Tests

796

11.19 Heat Deflection Temperature (ASTM D-648)

797

11.19.1 Apparatus and Test Specimens

797

11.19.2 Test Procedure

798

11.19.3 Test Variables and Limitations

798

11.20 Soldering Heat Resistance

798

11.21 Coefficient of Linear Thermal Expansion Testing

799

11.21.1 Test Procedure

800

11.22 Thermal Conductivity Testing (ASTM C-177)

800

11.23 Melt Flow Testing

802

11.23.1 Moisture Content

803

11.24 Melt Index Testing (ASTM D-1238)

803

11.24.1 Melt Flow Rate

804

11.25 Capillary Rheometer Melt Viscosity Testing (ASTM D-1703)

805

11.25.1 Melt Viscosity vs. Shear Rate Curves

806

11.26 Electrical Properties Testing

807

11.26.1 Underwriter’s Laboratories (UL) Yellow Cards

808

11.26.2 How to Read and Interpret the “UL Yellow Card”

809

11.26.3 “UL Insulation Systems Recognition”

814

11.27 Electrical Insulation Properties

815

11.28 Electrical Resistance Properties

815

11.28.1 Volume Resistivity Testing (ASTM D-257)

816

11.28.2 Surface Resistivity Testing (ASTM D-257)

817

11.28.3 Dielectric Strength Testing (ASTM D-149)

818

11.28.4 Dielectric Constant Testing (ASTM D-150)

820

11.28.5 Dissipation Factor Testing (ASTM D-150)

823

11.28.6 Arc Resistance Testing (ASTM D-495)

824

11.28.7 High Voltage Arc Tracking Rate (UL-746 A)

826

11.28.8 Comparative Track Index Testing (ASTM D-3638/UL 746 A).

827

11.29 Self and Flash Ignition Temperature Testing (ASTM D-1929)

828

11.29.1 Test Description

828

11.29.2 High Current Arc Ignition Testing (UL 746A)

829

11.29.3 Hot Wire Coil Ignition Testing (UL 746A/ASTM D-3874)

830

11.29.4 Hot Mandrel Testing

830

11.29.5 Glow Wire Testing

830

11.30 Flammability Characteristics of Polymers

832

11.30.1 Inherently Flame Retardant Polymers

833

11.30.2 Less Flame Retardant Polymers

833

11.30.3 Flammable Polymers

833

11.31 UL 94 Flammability Testing

834

11.31.1 Horizontal Burning Testing, UL 94HB

834

11.31.2 Vertical Burning Testing, UL 94-V0, UL 94-V1, UL 94-V2

835

11.31.3 Vertical Burning Testing, UL 94-5V, UL 94-5VA, UL 94-5VB

836

11.31.4 Factors Affecting UL 94 Flammability Testing

838

11.32 Limited Oxygen Index Testing (ASTM D-2863)

838

11.32.1 Test Procedures

839

11.32.2 Factors Affecting the Test Results

839

11.33 Smoke Generation Testing

840

11.33.1 Smoke Density Testing (ASTM D-2843)

840

11.34 Weathering Tests for Thermoplastic Materials

841

11.34.1 Weathering Creep Factors (Degradation)

841

11.34.2 Ultraviolet (UV) Radiation

842

11.34.3 Temperature

842

11.34.4 Moisture

843

11.34.5 Oxidation

22

11.34.6 Micro-Organisms

843

11.35 Accelerated Weathering Testing (ASTM G 23)

844

11.35.1 Exposure to Fluorescent UV Lamp, Condensation (ASTM G 53)

844

11.35.2 Accelerated Weather Testing, Weather-Ometer®

845

11.35.3 Exposure to Carbon Arc Light and Water Testing (ASTM D-1499)

846

11.35.4 Exposure to Xenon Arc Light and Water Testing (ASTM D-2565)

848

11.35.5 Outdoor Weathering Testing of Thermoplastics (ASTM D-1435)

850

11.36 Fungi Resistance Testing of Thermoplastics (ASTM G 21)

851

11.37 Bacteria Resistance Testing of Thermoplastics (ASTM G 22)

852

11.38 Fungi and Bacteria Outdoor Exposure Resistance Limitations

852

12 Thermoplastic Product Cost Analysis

854

12.1 Injection Molding Process

855

12.2 Molding Cycle Time

855

12.3 Material Handling (Regrinds)

856

12.4 Capital Equipment

856

12.5 Injection Molding Machine Size

856

12.6 Injection Molding Machine Cost

859

12.7 Machine Installation and Safety Considerations

860

12.8 Auxiliary Equipment and Automation

860

12.9 Mold Cost

861

12.10 Molded Products Cost Analysis

864

12.10.1 Cost Analysis Basic Method

864

12.10.2 Cost Analysis Graph Method

865

12.10.3 Advanced Cost Analysis Method

866

12.11 Secondary Molding Operations

871

12.12 Additional Manufacturing Costs

871

Appendix

872

Acronyms for Polymeric Materials

872

Common Acronyms

873

Process Acronyms

874

Reinforcement and Filler Acronyms

874

Nomenclature

875

English and Metric Units Conversion Guide

876

Subject Index

878

About the Author

892

 

© 2009-2024 ciando GmbH