Polymer Processing - Modeling and Simulation

Tim A. Osswald, Juan P. Hernandez-Ortiz

Polymer Processing

Modeling and Simulation

2013

100 Seiten

Format: PDF

E-Book: €  149,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446412866

 

PREFACE

8

TABLE OF CONTENTS

10

INTRODUCTION

18

I.1 MODELING AND SIMULATION

18

I.2 MODELING PHILOSOPHY

21

I.3 NOTATION

25

I.4 CONCLUDING REMARKS

27

REFERENCES

28

PART I BACKGROUND

30

CHAPTER 1 POLYMER MATERIALS SCIENCE

32

1.1 CHEMICAL STRUCTURE

32

1.2 MOLECULAR WEIGHT

35

1.3 CONFORMATION AND CONFIGURATION OF POLYMER MOLECULES

40

1.4 MORPHOLOGICAL STRUCTURE

43

1.4.1 Copolymers and Polymer Blends

47

1.5 THERMAL TRANSITIONS

49

1.6 VISCOELASTIC BEHAVIOR OF POLYMERS

55

1.6.1 Stress Relaxation

55

1.6.2 Time-Temperature Superposition (WLF-Equation)

57

1.7 EXAMPLES OF COMMON POLYMERS

60

1.7.1 Thermoplastics

60

1.7.2 Thermosetting Polymers

62

1.7.3 Elastomers

63

Problems

64

REFERENCES

67

CHAPTER 2 PROCESSING PROPERTIES

68

2.1 THERMAL PROPERTIES

68

2.1.1 Thermal Conductivity

69

2.1.2 Specific Heat

74

2.1.3 Density

76

2.1.4 Thermal Diffusivity

82

2.1.5 Linear Coefficient of Thermal Expansion

82

2.1.6 Thermal Penetration

84

2.1.7 Measuring Thermal Data

84

2.2 CURING PROPERTIES

90

2.3 RHEOLOGICAL PROPERTIES

94

2.3.1 Flow Phenomena

94

2.3.2 Viscous Flow Models

99

2.3.3 Viscoelastic Constitutive Models

106

2.3.4 Rheometry

116

2.3.5 Surface Tension

121

2.4 PERMEABILITY PROPERTIES

124

2.4.1 Sorption

125

2.4.2 Diffusion and Permeation

127

2.4.3 Measuring S, D, and P

131

2.4.4 Diffusion of Polymer Molecules and Self-Diffusion

133

2.5 FRICTION PROPERTIES

133

Problems

135

REFERENCES

139

CHAPTER 3 POLYMER PROCESSES

142

3.1 EXTRUSION

143

3.1.1 The Plasticating Extruder

144

3.1.2 Extrusion Dies

153

3.2 MIXING PROCESSES

156

3.2.1 Distributive Mixing

159

3.2.2 Dispersive Mixing

160

3.2.3 Mixing Devices

162

3.3 INJECTION MOLDING

171

3.3.1 The Injection Molding Cycle

172

3.3.2 The Injection Molding Machine

175

3.3.3 Related Injection Molding Processes

180

3.4 SECONDARY SHAPING

181

3.4.1 Fiber Spinning

182

3.4.2 Film Production

182

3.4.3 Thermoforming

188

3.5 CALENDERING

189

3.6 COATING

191

3.7 COMPRESSION MOLDING

194

3.8 FOAMING

195

3.9 ROTATIONAL MOLDING

197

REFERENCES

198

PART II PROCESSING FUNDAMENTALS

200

CHAPTER 4 DIMENSIONAL ANALYSIS AND SCALING

202

4.1 DIMENSIONAL ANALYSIS

203

4.2 DIMENSIONAL ANALYSIS BY MATRIX TRANSFORMATION

205

4.3 PROBLEMS WITH NON-LINEAR MATERIAL PROPERTIES

223

4.4 SCALING AND SIMILARITY

223

Problems

234

REFERENCES

237

CHAPTER 5 TRANSPORT PHENOMENA IN POLYMER PROCESSING

238

5.1 BALANCE EQUATIONS

238

5.1.1 The Mass Balance or Continuity Equation

239

5.1.2 The Material or Substantial Derivative

240

5.1.3 The Momentum Balance or Equation of Motion

241

5.1.4 The Energy Balance or Equation of Energy

248

5.2 MODEL SIMPLIFICATION

251

5.2.1 Reduction in Dimensionality

253

5.2.2 Lubrication Approximation

254

5.3 SIMPLE MODELS IN POLYMER PROCESSING

256

5.3.1 Pressure Driven Flow of a Newtonian Fluid Through a Slit

256

5.3.2 Flow of a Power Law Fluid in a Straight Circular Tube (Hagen-Poiseuille Equation)

258

5.3.3 Flow of a Power Law Fluid in a Slightly Tapered Tube

259

5.3.4 Volumetric Flow Rate of a Power Law Fluid in Axial Annular Flow

260

5.3.5 Radial Flow Between two Parallel Discs — Newtonian Model

261

5.3.6 The Hele-Shaw model

263

5.3.7 Cooling or Heating in Polymer Processing

270

Problems

274

REFERENCES

276

CHAPTER 6 ANALYSES BASED ON ANALYTICAL SOLUTIONS

278

6.1 SINGLE SCREW EXTRUSION—ISOTHERMAL FLOW PROBLEMS

279

6.1.1 Newtonian Flow in the Metering Section of a Single Screw Extruder

280

6.1.2 Cross Channel Flow in a Single Screw Extruder

282

6.1.3 Newtonian Isothermal Screw and Die Characteristic Curves

286

6.2 EXTRUSION DIES—ISOTHERMAL FLOW PROBLEMS

289

6.2.1 End-Fed Sheeting Die

289

6.2.2 Coat Hanger Die

292

6.2.3 Extrusion Die with Variable Die Land Thicknesses

294

6.2.4 Pressure Flow of Two Immiscible Fluids with Different Viscosities

295

6.2.5 Fiber Spinning

297

6.2.6 Viscoelastic Fiber Spinning Model

300

6.3 PROCESSES THAT INVOLVE MEMBRANE STRETCHING

302

6.3.1 Film Blowing

302

6.3.2 Thermoforming

308

6.3.2 Thermoforming

308

6.4 CALENDERING — ISOTHERMAL FLOW PROBLEMS

309

6.4.1 Newtonian Model of Calendering

309

6.4.2 Shear Thinning Model of Calendering

316

6.4.3 Calender Fed with a Finite Sheet Thickness

318

6.5 COATING PROCESSES

320

6.5.1 Wire Coating Die

320

6.5.2 Roll Coating

322

6.6 MIXING — ISOTHERMAL FLOW PROBLEMS

326

6.6.1 Effect of Orientation on Distributive Mixing ? Erwin’s Ideal Mixer

326

6.6.2 Predicting the Striation Thickness in a Couette Flow System — Shear Thinning Model

327

6.6.3 Residence Time Distribution of a Fluid Inside a Tube

331

6.6.4 Residence Time Distribution Inside the Ideal Mixer

332

6.7 INJECTION MOLDING—ISOTHERMAL FLOW PROBLEMS

334

6.7.1 Balancing the Runner System in Multi-Cavity Injection Molds

334

6.7.2 Radial Flow Between Two Parallel discs

337

6.8 NON-ISOTHERMAL FLOWS

340

6.8.1 Non-Isothermal Shear Flow

340

6.8.2 Non-Isothermal Pressure Flow Through a Slit

342

6.9 MELTING AND SOLIDIFICATION

343

6.9.1 Melting with Pressure Flow Melt Removal

348

6.9.2 Melting with Drag Flow Melt Removal

350

6.9.3 Melting Zone in a Plasticating Single Screw Extruder

355

6.10 CURING REACTIONS DURING PROCESSING

361

6.11 CONCLUDING REMARKS

362

Problems

362

REFERENCES

370

PART III NUMERICAL TECHNIQUES

372

CHAPTER 7 INTRODUCTION TO NUMERICAL ANALYSIS

374

7.1 DISCRETIZATION AND ERROR

375

7.2 INTERPOLATION

375

7.2.1 Polynomial and Lagrange Interpolation

376

7.2.2 Hermite Interpolations

383

7.2.3 Cubic Splines

385

7.2.4 Global and Radial Interpolation

388

7.3 NUMERICAL INTEGRATION

391

7.3.1 Classical Integration Methods

393

7.3.2 Gaussian Quadratures

395

7.4 DATA FITTING

398

7.4.1 Least Squares Method

399

7.4.2 The Levenberg-Marquardt Method

400

7.5 METHOD OF WEIGHTED RESIDUALS

407

Problems

412

REFERENCES

414

CHAPTER 8 FINITE DIFFERENCE METHOD

416

8.1 TAYLOR-SERIES EXPANSIONS

418

8.2 NUMERICAL ISSUES

423

8.3 THE INFO-TRAVEL CONCEPT

424

8.4 STEADY-STATE PROBLEMS

426

8.5 TRANSIENT PROBLEMS

440

8.5.1 Higher Order Approximation Techniques

453

8.6 THE RADIAL FLOW METHOD

459

8.7 FLOW ANALYSIS NETWORK

470

8.8 PREDICTING FIBER ORIENTATION — THE FOLGAR-TUCKER MODEL

474

8.9 CONCLUDING REMARKS

476

Problems

479

REFERENCES

481

CHAPTER 9 FINITE ELEMENT METHOD

484

9.1 ONE-DIMENSIONAL PROBLEMS

484

9.1.1 One-Dimensional Finite Element Formulation

485

9.1.2 Numerical Implementation of a One-Dimenional Finite Element Formulation

489

9.1.3 Matrix Storage Schemes

495

9.1.4 Transient Problems

497

9.2 TWO-DIMENSIONAL PROBLEMS

501

9.2.1 Solution of Posisson’s equation Using a Constant Strain Triangle

501

9.2.2 Transient Heat Conduction Problem Using Constant Strain Triangle

505

9.2.3 Solution of Field Problems Using Isoparametric Quadrilateral Elements.

505

9.2.4 Two Dimensional Penalty Formulation for Creeping Flow Problems

510

9.3 THREE-DIMENSIONAL PROBLEMS

518

9.3.1 Three-dimensional Elements

518

9.3.2 Three-Dimensional Transient Heat Conduction Problem With Convection

520

9.3.3 Three-Dimensional Mixed Formulation for Creeping Flow Problems

522

9.4 MOLD FILLING SIMULATIONS USING THE CONTROL VOLUME APPROACH

524

9.4.1 Two-Dimensional Mold Filling Simulation of Non-Planar Parts (2.5D Model)

524

9.4.2 Full Three-Dimensional Mold Filling Simulation

528

9.5 VISCOELASTIC FLUID FLOW

533

Problems

538

REFERENCES

539

CHAPTER 10 BOUNDARY ELEMENT METHOD

542

10.1 SCALAR FIELDS

543

10.1.1 Green’s Identities

543

10.1.2 Green’s Function or Fundamental Solution

546

10.1.3 Integral Formulation of Poisson’s Equation

547

10.1.4 BEM Numerical Implementation of the 2D Laplace Equation

549

10.1.5 2D Linear Elements.

553

10.1.6 2D Quadratic Elements

556

10.1.7 Three-Dimensional Problems

559

10.2 MOMENTUM EQUATIONS

564

10.2.1 Green’s Identities for the Momentum Equations

565

10.2.2 Integral Formulation for the Momentum Equations

565

10.2.3 BEM Numerical Implementation of the Momentum Balance Equations

567

10.2.4 Numerical Treatment of the Weakly Singular Integrals

570

10.2.5 Solids in Suspension

575

10.3 COMMENTS OF NON-LINEAR PROBLEMS

584

10.4 OTHER BOUNDARY ELEMENT APPLICATIONS

585

Problems

591

REFERENCES

594

CHAPTER 11 RADIAL FUNCTIONS METHOD

598

11.1 THE KANSA COLLOCATION METHOD

599

11.2 APPLYING RFM TO BALANCE EQUATIONS IN POLYMER PROCESSING

601

11.2.1 Energy Balance

601

11.2.2 Flow problems

608

Problems

625

REFERENCES

627

INDEX

628

 

© 2009-2024 ciando GmbH