Solid Phase Processing of Polymers

I.M. Ward FRS, P.D. Coates, M. Dumoulin

Solid Phase Processing of Polymers

2013

427 Seiten

Format: PDF

E-Book: €  199,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446401846

 

Foreword

8

Contents

10

1 Introduction

22

1.1 Key Scientific Issues

22

1.1.1 The chemical structure of the polymer and its degrees of regularity

22

1.1.2 The effect of plastic deformation, the concept of the true stress-true strain curve

24

1.1.3 Structural considerations: molecular understanding of plastic deformation

29

References

31

2 Deformation Mechanisms and Morphology of Crystalline Polymers

32

2.1 Introduction

32

2.2 Macroscopic Phenomena

32

2.3 Cracks, Crazing and Brittleness

33

2.4 Segregation-Induced Brittleness

36

2.5 Cold Drawing

37

2.6 Morphological Factors

38

2.7 Microscopic Observations

40

2.8 Electron Microscopy

41

2.9 The Deformation of Banded Spherulites

43

2.10 Lamellar Deformation

45

2.11 Memory Retention in Cold Drawing

46

2.12 Ordering Within Fibres

48

2.13 Disentanglement

50

2.14 Overview

50

References

51

3 Characterization of Orientation

54

3.1 Molecular Orientation and Its Definition

54

3.2 Birefringence

62

3.2.1 Biaxially oriented polyethylene terephthalate (PET) film

67

3.2.2 PET orientation and relaxation monitoring

68

3.3 Vibrational Spectroscopy

70

3.3.1 General

70

3.3.2 Transmission infrared spectroscopy

70

3.3.3 Attenuated total reflection (ATR) infrared spectroscopy

79

3.3.4 External reflection infrared spectroscopy

81

3.3.5 Photoacoustic infrared spectroscopy

84

3.3.6 Raman spectroscopy

85

3.4 Other Spectroscopic Techniques

86

3.4.1 Fluorescence

86

3.4.2 Nuclear magnetic resonance (NMR) spectroscopy

88

3.5. X-Ray Diffraction

90

3.5.1 General

90

3.5.2 Amorphous orientation from X-Ray diffraction

95

3.5.3 Synchrotron X-Ray diffraction

97

3.6 Ultrasonic and Other Techniques

98

References

100

4. Solid State Processing of Fibers

106

4.1 Introduction

106

4.1.1 Background

106

4.1.2 Common polymers used in man made fibers

106

4.2 Overview of Fiber Processing

107

4.3 The Liquid State

110

4.4 The Spinning Process

111

4.4.1 Spinning technology

111

4.4.2 Modelling the spinning process

115

4.4.3. Development of structure during melt spinning

120

4.4.4 Development of structure during solution spinning

122

4.4.5 Development of structure during liquid crystalline spinning

123

4.5 The Drawing Process

123

4.5.1 Drawing technology

124

4.5.2 Modelling the drawing process

126

4.5.3 Development of structure during drawing of flexible chain polymers

131

4.6 The Heat Treating Process

134

4.6.1 Heat treating technology

134

4.6.2 Development of structure during the heat treating of flexible chain polymers

135

4.6.3 Development of structure during the heat treating of rigid chain polymers

135

4.7 Fiber Structure: Multiphase Models

136

4.8 General Process-Structure-Property Relationships

137

4.9 Other Textile Processes

138

4.10 Special Processes

139

4.10.1 Gel spinning and superdrawing

139

4.10.2 Protein fibers

139

4.11 Conclusions: what do you want to make - what really matters

140

References

140

5 High Modulus Fibres

141

5.1 Melt Spun Polyethylene, Polypropylene and Polyoxymethylene (Polyacetal) Fibres

141

5.1.1 Introduction

141

5.1.2 The tensile drawing behaviour of polyethylene

144

5.1.3 Tensile drawing of polypropylene and polyoxymethylene

149

5.1.4 The structure of ultra high modulus polymers

149

5.1.5 Fibre strength

151

5.1.6 Other mechanical properties

157

5.1.7 Thermal properties

168

5.1.8 Surface treatment

169

5.1.9 Applications of melt spun PE fibres

170

5.1.10 Composites

170

5.1.11 Hot compaction

171

References

173

5.2 Aramid Fibres

176

5.2.1 Historical introduction

176

5.2.2 Heat- and flame-resistant meta-aramid fibres

178

5.2.3 High-tenacity high-modulus fibres from anisotropic solution

180

5.3.3 High-tenacity high-modulus aramid fibres from isotropic solutions

189

References

191

5.3 Fibres Based on Ultra-High Molecular Weight Polyethylene - Processing and Applications

193

5.3.1 Introduction

193

5.3.2 The ultimate stiffness and strength of flexible polymers

200

5.3.3 Chain-extension, on the borderline between solid and melt

203

5.3.4 Properties and applications of polyethylene fibres

220

5.3.5 Limiting properties of polyethylene fibres

225

5.3.6 Conclusions

231

References

231

6 Development of Molecular Orientation During Biaxial Film Tentering of PET

235

6.1 Introduction

235

6.2 Definitions, Materials and Experimental Characterisation Techniques

238

6.2.1 Quantitative characterisation of orientation

238

6.2.2 Experimental techniques: Characterization of the crystalline phase

239

6.3 First Stretching Process

242

6.3.1 Normal sequence

242

6.3.2 Inverse sequence

249

6.3.3 Comparison between constant rate and constant force drawing of amorphous samples

251

6.4 Transverse Stretching of One-Way Drawn Samples

252

6.4.1 Transverse stretching in the normal sequence

252

6.4.2 Transverse stretching in the inverse sequence

259

6.4.3 Comparison between constant rate and constant force transverse drawing

263

6.5 High Temperature Annealing

265

6.5.1 Influence of annealing time

267

6.5.2 Influence of the annealing temperature

271

6.6 Conclusions

275

References

276

7. Rolling and Roll-Drawing of Semi-Crystalline Thermoplastics

279

7.1 Introduction

279

7.1.1 Why orient polymers?

279

7.1.2 Orientation processes and solid state deformation of semi-crystalline polymers

280

7.2 Rolling and Roll-drawing

283

7.2.1 Introduction

283

7.2.2 Roll-drawing of semi-crystalline polymers

284

7.2.3 Structure development

285

7.2.4 Mechanical properties

287

7.3 A Case Study: PET

289

7.3.1 Orientation of PET

289

7.3.2 Relaxation and recovery during rolling

290

7.4 Roll-Drawing ofPET

300

7.4.1 Roll-drawing of amorphous PET

301

7.4.2 Roll-drawing of semi-crystalline PET

303

7.4.3 Properties

312

References

315

8 Planar Deformation of Thermoplastics

317

8.1 Introduction

317

8.2 Concepts

319

8.2.1 Synergistic effect

319

8.2.2 Orientation texture

320

8.2.3 Order-disorder transition

321

8.3 Physical Properties Induced By Planar Deformation

322

8.3.1 Polyethylene

322

8.3.2 Polypropylene

325

8.3.3 Higher poly-1-olefine

329

8.3.4 Poly(ethylene terephthalate)

329

8.3.5 Polyimide

330

8.3.6 Other thermoplastics

331

8.4 Analytical Approaches for Planar Deformation

331

8.4.1 Ductility and draw efficiency

331

8.4.2 Trirefringence

332

8.4.3 X-ray analysis

333

8.4.4 Spectroscopy

334

8.4.5 Neutron scattering

335

8.4.6 Elastic recovery

335

8.4.7 Gas permeation

336

8.4.8 Mechanical tests

338

8.4.9 Multiple regression analysis

342

References

345

9 Solid State Extrusion and Die Drawing

349

9.1 Ram Extrusion

349

9.2 Hydrostatic Extrusion

351

9.2.1 Introduction

351

9.2.2 The mechanics of the hydrostatic extrusion process

353

9.2.3 Hydrostatic extrusion as a possible engineering operation

358

9.2.4 Hydrostatic extrusion of pressure annealed polyethylene

359

9.2.5 Hydrostatic extrusion of filled polymers

362

9.2.6 Other properties of hydrostatically extruded materials

365

9.3 Die-Drawing

366

9.3.1 The die-drawing process

366

9.3.2 Die-drawing of tube

372

9.3.3 Development of the continuous die-drawing process

378

9.3.4 Mechanics of the die-drawing process

382

9.3.5 Properties of die-drawn products

383

9.3.6 Applications of die-drawn materials

385

References

386

10. Mathematical Modelling

389

10.1 Constitutive Equations

389

10.1.1 Phenomenological equations

389

10.1.2 Constitutive relations incorporating the deformation of a molecular network

394

10.2 Numerical Modelling of Forming Processes

400

10.2.1 Elastic constitutive behaviour

401

10.2.2 Rate dependent constitutive behaviour

413

References

423

Index

425

 

© 2009-2024 ciando GmbH