Extrusion Dies for Plastics and Rubber - Design and Engineering Computations

Christian Hopmann, Walter Michaeli

Extrusion Dies for Plastics and Rubber

Design and Engineering Computations

2016

470 Seiten

Format: PDF, ePUB

E-Book: €  199,99

E-Book kaufen

E-Book kaufen

ISBN: 9781569906248

 

Preface

6

Preface to the Third Edition

8

Preface to the Second Edition

10

Preface to the First Edition

12

Contents

14

1 Introduction

20

1.1 Reference of Chapter 1

26

2 Properties of Polymeric Melts

28

2.1 Rheological Behavior

28

2.1.1 Viscous Properties of Melts

29

2.1.1.1 Viscosity and Flow Functions

29

2.1.1.2 Mathematical Description of the Pseudoplastic Behavior of Melts

31

2.1.1.3 Influence of Temperature and Pressure on the Flow Behavior

38

2.1.2 Determination of Viscous Flow Behavior

45

2.1.3 Viscoelastic Properties of Melts

51

2.2 Thermodynamic Behavior

57

2.2.1 Density

58

2.2.2 Thermal Conductivity

60

2.2.3 Specific Heat Capacity

61

2.2.4 Thermal Diffusivity

62

2.2.5 Specific Enthalpy

62

2.3 References of Chapter 2

65

3 Fundamental Equations for Simple Flows

68

3.1 Flow through a Pipe

69

3.2 Flow through a Slit

75

3.3 Flow through an Annular Gap

79

3.4 Summary of Simple Equations for Dies

83

3.5 Phenomenon of Wall Slip

93

3.5.1 Model Considering the Wall Slip

93

3.5.2 Instability in the Flow Function - Melt Fracture

98

3.5 References of Chapter 3

101

4 Computation of Velocity and Temperature Distributions in Extrusion Dies

104

4.1.1 Continuity Equation

105

4.1.2 Momentum Equations

106

4.1.3 Energy Equation

107

4.2 Restrictive Assumptions and Boundary Conditions

111

4.3 Analytical Formulas for Solution of the Conservation Equations

113

4.4 Numerical Solution of Conservation Equations

119

4.4.1 Finite Difference Method

120

4.4.2 Finite Element Method

123

4.4.3 Comparison of FDM and FEM

128

4.4.4 Examples of Computations of Extrusion Dies

131

4.5 Consideration of the Viscoelastic Behavior of the Material

145

4.6 Computation of the Extrudate Swelling

149

4.7 Methods for Designing and Optimizing Extrusion Dies

155

4.7.1 Industrial Practice for the Design of Extrusion Dies

156

4.7.2 Optimization Parameters

159

4.7.2.1 Practical Optimization Objectives

159

4.7.2.2 Practical Boundary Conditions and Constraints When Designing Flow Channels

160

4.7.2.3 Independent Parameters during Die Optimization

161

4.7.2.4 Dependent Parameters during Die Optimization and Their Modeling

161

4.7.3 Optimization Methods

163

4.7.3.1 Gradient-Free Optimization Methods

165

4.7.3.2 Gradient-Based Optimization Methods

168

4.7.3.3 Stochastic Optimization Methods

169

4.7.3.4 Evolutionary Methods

169

4.7.3.5 Treatment of Boundary Conditions

171

4.7.4 Practical Applications of Optimization Strategies for the Design of Extrusion Dies

173

4.7.4.1 Optimization of a Convergent Channel Geometry

173

4.7.4.2 Optimization of Profile Dies

175

4.8 References of Chapter 4

181

5 Monoextrusion Dies for Thermoplastics

186

5.1 Dies with Circular Exit Cross Section

186

5.1.1 Designs and Applications

186

5.1.2 Design

194

5.2 Dies with Slit Exit Cross Section

199

5.2.1 Designs and Applications

199

5.2.2 Design

206

5.2.2.1 T-Manifold

209

5.2.2.2 Fishtail Manifold

209

5.2.2.3 Coathanger Manifold

211

5.2.2.4 Numerical Procedures

222

5.2.2.5 Considerations for Clam Shelling

224

5.2.2.6 Unconventional Manifolds

225

5.2.2.7 Operating Performance of Wide Slit Dies

228

5.3 Dies with Annular Exit Cross Section

231

5.3.1 Types

232

5.3.1.1 Center-Fed Mandrel Support Dies

232

5.3.1.2 Screen Pack Dies

236

5.3.1.3 Side-Fed Mandrel Dies

237

5.3.1.4 Spiral Mandrel Dies

238

5.3.2 Applications

241

5.3.2.1 Pipe Dies

241

5.3.2.2 Blown Film Dies

242

5.3.2.3 Dies for the Extrusion of Parisons for Blow Molding

244

5.3.2.4 Coating Dies

251

5.3.3 Design

254

5.3.3.1 Center-Fed Mandrel Dies and Screen Pack Dies

254

5.3.3.2 Side-Fed Mandrel Dies

258

5.3.3.3 Spiral Mandrel Dies

261

5.3.3.4 Coating Dies

265

5.4 Formulas for the Computation of the Pressure Loss in Flow Channel Geometries other than Pipe or Slit

269

5.5 Dies with Irregular Outlet Geometry (Profile Dies)

274

5.5.1 Designs and Applications

274

5.5.2 Design

283

5.6 Dies for Foamed Semifinished Products

291

5.6.1 Dies for Foamed Films

293

5.6.2 Dies for Foamed Profiles

293

5.7 Special Dies

295

5.7.1 Dies for Coating of Profiles of Arbitrary Cross Section

295

5.7.2 Dies for the Production of Profiles with Reinforcing Inserts

296

5.7.3 Dies for the Production of Nets

297

5.7.4 Slit Die with Driven Screw for the Production of Slabs

298

5.8 References of Chapter 5

301

6 Coextrusion Dies for Thermoplastics

308

6.1 Designs

309

6.1.1 Externally Combining Coextrusion Dies

309

6.1.2 Adapter (Feedblock) Dies

310

6.1.3 Multimanifold Dies

313

6.1.4 Layer Multiplication Dies

313

6.2 Applications

315

6.2.1 Film and Sheet Dies

315

6.2.2 Blown Film Dies

317

6.2.3 Dies for the Extrusion of Parisons for Blow Molding

318

6.3 Computations of Flow and Design

319

6.3.1 Computation of Simple Multilayer Flow with Constant Viscosity

322

6.3.2 Computation of Coextrusion Flow by the Explicit Finite Difference Method

327

6.3.3 Computation of Velocity and Temperature Fields by the Finite Difference Method

330

6.3.4 Computation of Velocity Fields in Coextrusion Flows by FEM

333

6.4 Instabilities in Multilayer Flow

335

6.5 References of Chapter 6

342

7 Extrusion Dies for Elastomers

344

7.1 Design of Dies for the Extrusion of Elastomers

344

7.2 Fundamentals of Design of Extrusion Dies for Elastomers

346

7.2.1 Thermodynamic Material Data

346

7.2.2 Rheological Material Data

347

7.2.3 Computation of Viscous Pressure Losses

350

7.2.3.1 Formulas for Isothermal

350

7.2.3.2 Approaches to Nonisothermal Computations

353

7.2.4 Estimation of the Peak Temperatures

354

7.2.5 Consideration of the Elastic Behavior of the Material

355

7.3 Design of Distributor Dies for Elastomers

356

7.4 Design of Slotted Disks for Extrusion Dies for Elastomers

358

7.4.1 Computation of Pressure Losses

358

7.4.2 Extrudate Swelling (Die Swell)

361

7.4.3 Simplified Estimations for the Design of a Slotted Disk

365

7.5 References of Chapter 7

373

8 Heating of Extrusion Dies

376

8.1 Types and Applications

377

8.1.1 Heating of Extrusion Dies with Fluids

377

8.1.2 Electrically Heated Extrusion Dies

378

8.1.3 Temperature Control of Extrusion Dies

379

8.2 Thermal Design

381

8.2.1 Criteria and Degrees of Freedom for Thermal Design

381

8.2.2 Heat Balance of the Extrusion Die

383

8.2.3 Restrictive Assumptions in the Modeling

388

8.2.4 Simulation Methods for Thermal Design

388

8.3 References of Chapter 8

397

9 Mechanical Design of Extrusion Dies

400

9.1 Mechanical Design of a Breaker Plate

401

9.2 Mechanical Design of a Die with Axially Symmetrical Flow Channels

406

9.3 Mechanical Design of a Slit Die

416

9.4 General Design Rules

420

9.5 Materials for Extrusion Dies

421

9.6 References of Chapter 9

428

10 Handling, Cleaning, and Maintaining Extrusion Dies

430

10.1 References of Chapter 10

433

11 Calibration of Pipes and Profiles

434

11.1 Types and Applications

437

11.1.1 Friction Calibration

437

11.1.2 External Calibration with Compressed Air

438

11.1.3 External Calibration with Vacuum

439

11.1.4 Internal Calibration

443

11.1.5 Precision Extrusion Pullforming (the Technoform Process)

444

11.1.6 Special Process with Movable Calibrators

445

11.2 Thermal Design of Calibration Lines

445

11.2.1 Analytical Computational Model

447

11.2.2 Numerical Computational Model

451

11.2.3 Analogy Model

456

11.2.4 Thermal Boundary Conditions and Material Data

459

11.3 Effect of Cooling on the Quality of the Extrudate

460

11.4 Mechanical Design of Calibration Lines

461

11.5 Cooling Dies, Process for Production of Solid Bars

461

11.6 References of Chapter 11

465

Index

468

 

© 2009-2024 ciando GmbH