Structure and Rheology of Molten Polymers - From Structure to Flow Behavior and Back Again

John M. Dealy, Ronald G. Larson

Structure and Rheology of Molten Polymers

From Structure to Flow Behavior and Back Again

2014

531 Seiten

Format: PDF, Online Lesen

E-Book: €  199,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446412811

 

Preface

6

Contents

9

1 Introduction

16

1.1 Melt Structure and its Effect on Rheology

16

1.2 Overview of this Book

16

1.3 Applications of the Information Presented

18

1.4 Supplementary Sources of Information

19

2 Structure of Polymers

22

2.1 Molecular Size

22

2.1.1 The Freely-Jointed Chain

22

2.1.2 The Gaussian Size Distribution

23

2.1.3 The Dilute Solution and the Theta State

29

2.1.4 Polymer Molecules in the Melt

31

2.2 Molecular Weight Distribution

32

2.2.1 Monodisperse Polymers

32

2.2.2 Average Molecular Weights – Moments of the Distribution

33

2.2.3 Continuous Molecular Weight Distribution

35

2.2.4 Distribution Functions

37

2.2.5 Narrow Distribution Samples

41

2.2.6 Bimodality

42

2.3 Tacticity

42

2.4 Branching

43

2.5 Intrinsic Viscosity

45

2.5.1 Introduction

45

2.5.2 Rigid Sphere Models

46

2.5.3 The Free-Draining Molecule

48

2.5.4 Non-Theta Conditions and the Mark-Houwink-Sakurada Equation

48

2.5.5 Effect of Polydispersity

50

2.5.6 Effect of Long-chain Branching

51

2.5.7 Effects of Short-Chain Branching

52

2.5.8 Determination of the Intrinsic Viscosity – Extrapolation Methods

54

2.5.9 Effect of Shear Rate

54

2.6 Other Structure Characterization Methods

55

2.6.1 Membrane Osmometry

55

2.6.2 Light Scattering

56

2.6.3 Gel Permeation Chromatography

57

2.6.4 Mass Spectrometry (MALDI-TOF)

63

2.6.5 Nuclear Magnetic Resonance

63

2.6.6 TREF and CRYSTAF

64

2.6.7 Molecular Structure from Rheology

66

2.7 Summary

66

3 Polymerization Reactions and Processes

72

3.1 Introduction

72

3.2 Classifications of Polymers and Polymerization Reactions

73

3.3 Structural Characteristics of Polymers

75

3.3.1 Introduction

75

3.3.2 Chemical Composition –Role of Backbone Bonds in Chain Flexibility

75

3.3.3 Chemical Composition – Copolymers

75

3.3.4 Tacticity

76

3.3.5 Branching

76

3.4 Living Polymers Having Prescribed Structures

77

3.4.1 Anionic Polymerization

78

3.4.2 Living Free Radical Polymerization

80

3.4.3 Analogs of Polyethylene for Research

80

3.5 Industrial Polymerization Processes

81

3.6 Free-Radical Polymerization of Low-Density Polyethylene (LDPE)

82

3.7 High-Density Polyethylene

83

3.7.1 Catalyst Systems

83

3.7.2 Branching in HDPE

84

3.7.3 Ultrahigh Molecular Weight Polyethylene

85

3.8 Linear Low-Density Polyethylene

85

3.9 Single-Site (Metallocene) Catalysts

86

3.9.1 Catalyst System

86

3.9.2 Long-Chain Branching in Metallocene Polyethylenes

88

3.10 Polypropylene

94

3.11 Reactors for Polyolefins

96

3.12 Polystyrene

97

3.13 Summary

98

4 Linear Viscoelasticity – Fundamentals

106

4.1 Stress Relaxation and the Relaxation Modulus

106

4.1.1 The Boltzmann Superposition Principle

106

4.1.2 The Maxwell Model for the Relaxation Modulus

110

4.1.3 The Generalized Maxwell Model and the Discrete Relaxation Spectrum

113

4.1.4 The Continuous Relaxation Spectrum

114

4.2 The Creep Compliance and the Retardation Spectrum

115

4.3 Experimental Characterization of Linear Viscoelastic Behavior

119

4.3.1 Oscillatory Shear

120

4.3.2 Experimental Determination of the Storage and Loss Moduli

124

4.3.3 Creep Measurements

127

4.3.4 Other Methods for Monitoring Relaxation Processes

128

4.4 Calculation of a Spectrum from Experimental Data

129

4.5 Moments of the Relaxation Spectrum as Indicators of Molecular Structure

133

4.6 Time-Temperature Superposition

135

4.7 Time-Pressure Superposition

141

4.8 Summary

141

5 Linear Viscoelasticity – Behavior of Molten Polymers

146

5.1 Introduction

146

5.2 The Zero-Shear Viscosity

146

5.2.1 Effect of Molecular Weight

147

5.2.2 Effect of Polydispersity

150

5.3 Relaxation Modulus

152

5.3.1 General Features

152

5.3.2 How a Melt Can Act Like a Rubber

155

5.4 The Storage and Loss Moduli

155

5.5 The Creep and Recoverable Compliances

159

5.6 The Steady-State Compliance

161

5.7 The Storage and Loss Compliances

163

5.8 Determination of the Plateau Modulus

165

5.9 The Molecular Weight Between Entanglements, Me

167

5.9.1 Definitions of Me

168

5.9.2 Effects of Molecular Structure on GN0 and Me

170

5.9.3 Molecular Weight Between Entanglements (Me) Based on Molecular

5.9.3 Molecular Weight Between Entanglements (Me) Based on Molecular

170

170

5.10 Rheological Behavior of Copolymers

174

5.11 Effect of Long-Chain Branching on Linear Viscoelastic

5.11 Effect of Long-Chain Branching on Linear Viscoelastic

175

175

5.11.1 Introduction

175

5.11.2 Ideal Branched Polymers

176

5.11.3 Storage and Loss Moduli of Model Branched Systems

181

5.11.4 Randomly Branched Polymers

184

5.11.5 Low-Density Polyethylene

186

5.12 Use of Linear Viscoelastic Data to Determine Branching Level

188

5.12.1 Introduction

188

5.12.2 Correlations Based on the Zero-Shear Viscosity

189

5.13 The Cole-Cole Function and Cole-Cole Plots

191

5.13.1 The Complex Dielectric Constant and the Cole-Cole Function

191

5.13.2 Cole-Cole Plots for Characterizing Linear Viscoelastic Behavior

192

5.13.3 Van Gurp-Palmen Plot of Loss Angle Versus Complex Modulus

197

5.14 Summary

198

6 Tube Models for Linear Polymers – Fundamentals

208

6.1 Introduction

208

6.2 The Rouse-Bueche Model for Unentangled Polymers

209

6.2.1 Introduction

209

6.2.2 The Rouse Model for the Viscoelasticity of a Dilute Polymer Solution

210

6.2.3 Bueche’s Modification for an Unentangled Melt

212

6.3 Entanglements and the Tube Model

218

6.3.1 The Critical Molecular Weight for Entanglement MC

219

6.3.2 The Plateau Modulus GN0

221

6.3.3 The Molecular Weight Between Entanglements Me

222

6.3.4 The Tube Diameter a

223

6.3.5 The Equilibration Time te

226

6.4 Modes of Relaxation

227

6.4.1 Reptation

227

6.4.2 Primitive Path Fluctuations

229

6.4.3 Reptation Combined with Primitive Path Fluctuations

230

6.4.4 Constraint Release – Double Reptation

233

6.4.5 Rouse Relaxation Within the Tube

243

6.5 Summary

244

7 Tube Models for Linear Polymers – Advanced Topics

248

7.1 Introduction

248

7.2 Limitations of Double Reptation Theory

248

7.3 Constraint-Release Rouse Relaxation

251

7.3.1 Non-Self-Entangled Long Chains in a Short-Chain Matrix

251

7.3.2 Self-Entangled Long Chains in a Short-Chain Matrix

255

7.3.3 Polydisperse Chains

256

7.4 Tube Dilation or “Dynamic Dilution”

257

7.5 Input Parameters for Tube Models

261

8 Determination of Molecular Weight Distribution Using Rheology

274

8.1 Introduction

274

8.2 Viscosity Methods

274

8.3 Empirical Correlations Based on the Elastic Modulus

281

8.4 Methods Based on Double Reptation

282

8.5 Generalization of Double-Reptation

286

8.6 Dealing with the Rouse Modes

287

8.7 Models that Account for Additional Relaxation Processes

287

8.8 Prediction of Polydispersity Indexes

290

8.9 Summary

290

9 Tube Models for Branched Polymers

294

9.1 Introduction

294

9.2 General Effect of LCB on Rheology

295

9.3 Star Polymers

300

9.3.1 Deep Primitive Path Fluctuations

300

9.3.2 Dynamic Dilution

302

9.3.3 Comparison of Milner-McLeish Theory to Linear Viscoelastic Data

305

9.4 Multiply Branched Polymers

313

9.4.1 Branch-Point Motion

313

9.4.2 Backbone Relaxation

315

9.4.3 Dynamic Dilution for Polymers with Backbones

316

9.4.4 Predictions for Molecules with Moving Branch Points:

9.4.4 Predictions for Molecules with Moving Branch Points:

318

318

9.5 Theories and Algorithms for Polydisperse Branched Polymers

322

9.5.1 Hierarchical Dynamic Dilution Model

323

9.5.2 Slip Link Simulations

329

9.6 Dilution and Combinatorial Rheology

336

9.7 Summary

339

10 Nonlinear Viscoelasticity

344

10.1 Introduction

344

10.2 Nonlinear Phenomena – A Tube Model Interpretation

344

10.2.1 Large Scale Orientation – The Need for a Finite Strain Tensor

345

10.2.2 Chain Retraction and the Damping Function

345

10.2.3 Convective Constraint Release and Shear Thinning

347

10.3 Constitutive Equations

347

10.3.1 Boltzmann Revisited

349

10.3.2 The Rubberlike Liquid

351

10.3.3 Wagner’s Equation

352

10.3.4 Other Integral Constitutive Equations

353

10.3.5 Differential Constitutive Equations

355

10.4 Nonlinear Stress Relaxation

356

10.4.1 Doi and Edwards Predictions of the Damping Function

356

10.4.2 Estimating the Rouse Time of an Entangled Chain

358

10.4.3 Damping Functions of Typical Polymers

359

10.4.4 Normal Stress Relaxation

363

10.4.5 Double-Step Strain

366

10.5 Dimensionless Groups Used to Plot Rheological Data

366

10.5.1 The Deborah Number

366

10.5.2 The Weissenberg Number

367

10.6 Transient Shear Tests at Finite Rates

368

10.6.1 Stress Growth and Relaxation in Steady Shear

368

10.6.2 Nonlinear Creep

371

10.6.3 Large-Amplitude Oscillatory Shear

371

10.6.4 Exponential Shear

372

10.7 The Viscometric Functions

373

10.7.1 Dependence of Viscosity on Shear Rate

373

10.7.2 Normal Stress Differences in Steady Simple Shear

379

10.8 Experimental Methods for Shear Measurements

383

10.8.1 Optical Methods

383

10.8.2 Generating Step Strain

383

10.8.3 Rotational Rheometers

384

10.8.4 Measurement of the Second Normal Stress Difference

387

10.8.5 Capillary and Slit Rheometers

388

10.8.6 The Cox-Merz Rule

390

10.8.7 Sliding Plate Rheometers

392

10.9 Extensional Flow Behavior – Introduction

392

10.10 Extensional Flow Behavior of Melts and Concentrated Solutions

402

10.10.1 Linear, Monodisperse Polymers

402

10.10.2 Effect of Polydispersity

402

10.10.3 Linear Low-Density Polyethylene

403

10.10.4 Model Branched Systems

404

10.10.5 Long-Chain Branched Metallocene Polyethylenes

404

10.10.6 Randomly Branched Polymers and LDPE

405

10.11 Experimental Methods for Extensional Flows

407

10.11.1 Introduction

407

10.11.2 Rheometers for Uniaxial Extension

407

10.11.3 Uniaxial Extension – Approximate Methods

412

10.11.4 Rheometers for Biaxial and Planar Extension

413

10.11.5 Extensional Rheometers – Summary

414

10.12 Shear Modification

414

10.13 Summary

415

11 Tube Models for Nonlinear Viscoelasticity of Linear and Branched Polymers

430

11.1 Introduction

430

11.2 Relaxation Processes Unique to the Nonlinear Regime

431

11.2.1 Retraction

431

11.2.2 Convective Constraint Release

432

11.3 Monodisperse Linear Polymers

433

11.3.1 No Chain Stretch: the Doi-Edwards Equation

433

11.3.2 Chain Stretch: the Doi-Edwards-Marrucci-Grizzuti (DEMG) Theory

436

11.3.3 Convective Constraint Release (CCR).

440

11.3.4 Differential Constitutive Equations Containing CCR

445

11.4 Polydisperse Linear Polymers

448

11.5 Comparison of Theory with Data for Linear Polymers

451

11.5.1 Shearing Flows

451

11.5.2 Extensional Flows

455

11.5.3 Processing Flows

462

11.5.4 Constitutive Instabilities and Slip

462

11.6 Polymers with Long-Chain Branching

463

11.6.1 The Pom-Pom Model

11.6.1 The Pom-Pom Model

11.6.2 Revisions to the Pom-Pom Model

474

11.6.3 Empirical Multi-Mode Pom-Pom Equations for Commercial Melts

476

11.7 Summary

479

12 State of the Art and Challenges for the Future

488

12.1 State of the Art

488

12.2 Progress and Remaining Challenges

491

Appendix

496

A Structural and Rheological Parameters for Several Polymers

496

B Some Tensors Useful in Rheology

498

Nomenclature

502

Author Index

508

Subject Index

520

 

© 2009-2024 ciando GmbH