Fatigue, Stress, and Strain of Rubber Components - Guide for Design Engineers

Judson T. Bauman, Ph.D

Fatigue, Stress, and Strain of Rubber Components

Guide for Design Engineers

2012

226 Seiten

Format: PDF, Online Lesen

E-Book: €  79,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446433403

 

Inhaltsverzeichnis

6

1 Introduction

12

1.1 Objective

12

1.2 Discovery

12

1.2.1 First Vulcanization

13

1.2.2 Early Manufacture of Rubber Products

13

1.2.3 Discovery of Reinforcement

13

1.2.4 Production of Rubber

13

1.3 The Rubber Molecule

14

1.4 Synthetics

14

1.4.1 Curing and Crosslinking

15

1.4.2 Fillers and Reinforcement

16

1.4.3 Curing Ingredients

16

1.4.4 Other Additives

17

1.5 Principal Uses of Several Elastomers

17

Bibliography

18

2 Rubber Stress-Strain Behavior

20

2.1 Challenges of Rubber Behavior

20

2.2 Characteristics of Stress-Strain Behavior

20

2.2.1 Low Elastic Modulus, High Elongation at Break, and Non-Linearity

20

2.2.2 Hysteresis

21

2.2.3 Stress Relaxation

22

2.2.4 Creep

22

2.2.5 Mullins Effect

23

2.2.6 Reinforcement

24

2.2.7 Cyclic Frequency and Strain Rate

25

2.2.8 Temperature

26

2.2.9 Immersion Effects

26

2.2.10 Strain Crystallization

27

2.2.11 Permanent Set

28

2.2.12 Recovery

28

Bibliography

29

3 ATheory of the Elastomer Stress-Strain Curve

30

3.1 Introduction

30

3.2 The Internal Structure of the Vulcanized Elastomer

31

3.3 Assumptions and Hypotheses

32

3.3.1 The Coil Spring Analogy

32

3.3.2 Chain Segments and Terminations

35

3.3.3 Statistical Distribution of Chains in Length and End Point Separation

35

3.3.4 The Presence of van der Waals Bonds

36

3.3.5 Reinforcement by Particle Rotation

39

3.3.6 Migration of Entanglements

42

3.3.7 Temperature-Induced Chain Vibration

43

3.3.8 Bond Breaking and Remaking in Deformation

44

3.3.9 Parallelism-Induced Crystallization

44

3.4 Elastomer Behaviors

45

3.4.1 The Non-Linear Stress-Strain Curve

45

3.4.2 The Mullins Effect

45

3.4.3 Low Elastic Modulus and High Elongation at Break

47

3.3.4 Hysteresis

48

3.4.5 Stiffening by Reinforcing Fillers

48

3.4.6 Strain Rate Stiffening

48

3.4.7 Temperature Response

49

3.4.8 Stress Relaxation and Cyclic Stress Relaxation

49

3.4.9 Creep and Creep under Cyclic Conditions

49

3.4.10 Permanent Set

50

3.4.11 Recovery

50

3.4.12 Strain Crystallization

50

Acknowledgements

50

References

51

4 Stress-Strain Testing

54

4.1 Introduction

54

4.2 Tensile Testing

54

4.2.1 Specimens

54

4.2.2 Testing with the Dumbbell Specimen

55

4.2.3 Testing with the Planar Stress Specimen

60

4.2.4 Testing with the Loop Specimen

63

4.3 Shear Testing

65

4.3.1 Stress-Strain State

65

4.3.2 Specimens

65

4.4 Biaxial Strain Testing

68

4.4.1 The Bubble Test

68

4.4.2 The Cross Specimen

74

4.5 Compression Testing

75

4.6 Summary

77

References

77

5 Design Equations

80

5.1 Introduction

80

5.1.1 Use of Design Equations

80

5.1.2 Elastic Constants

80

5.2 Design Equations for Various Geometries

82

5.2.1 Pads in Shear

82

5.2.2 Pads in Torsion

84

5.2.3 Bushings

85

5.2.4 Pads in Compression

87

5.2.5 Compression of a Long Strip

91

5.2.6 Solid Rubber Rollers

92

5.2.7 Rubber-Covered Rollers

93

5.2.8 Compression of a Rubber Sphere

93

5.2.9 Compression of Solid Rubber Tire

94

5.2.10 Compression of Solid Rubber Ring of Circular Cross-Section

95

5.2.11 Solid Rubber Ring with Rectangular Cross-Section

95

5.2.12 Indenter, Flat Ended Cylinder

96

5.2.13 Indenter, Spherical Head

97

5.2.14 Indenter, Conical

97

5.2.15 Indenter, Long Narrow Flat End

97

5.2.16 Protrusion Through a Round Hole

98

5.2.17 Protrusion Through Long Narrow Gap

98

5.3 Summary

98

References

99

6 CalculationMethods for Spherical Elastomer Bearings

100

6.1 Introduction

100

6.2 History of the Spherical Bearing

100

6.3 Mathematical Description of the Bearing

102

6.3.1 Overall Bearing Parameters

103

6.3.2 Parameters of Particular Pads

103

6.3.3 Angular Moment

106

6.4 Shear Strain of Pads under Angular Deflection

106

6.5 Axial Loads

110

6.5.1 Compression of Pads under Axial Force

111

6.5.2 Bulge Shear Strain

112

6.5.3 Summary of Calculations

114

6.6 Torsional Loads

114

6.6.1 Shear Strain of Pads under Torsional Rotation

115

6.6.2 Computational Procedure

115

6.6.3 Limitations

116

References

116

7 Finite Element Analysis

118

7.1 Introduction

118

7.2 Procedure

118

7.2.1 Symmetry

119

7.2.2 Loads and Boundary Conditions

119

7.2.3 Element Selection and Meshing

119

7.3 Material Model or Constitutive Equations

120

7.3.1 Simpler Constitutive Equations

121

7.3.2 Higher Order Constitutive Equations

121

7.4 Fitting Equations to Test Data

122

7.5 O-Ring Seal with Pressure

123

7.6 Rubber Boot

125

7.7 Summary

126

Acknowledgements

126

References

126

8 Fatigue Testing

128

8.1 Introduction

128

8.2 Parameters Affecting the Strain-Life Curve

128

8.2.1 Parameters to Be Specified

129

8.2.2 Selecting Strain Amplitude

129

8.3 Failure Criteria

129

8.4 R-Ratio

130

8.5 Combined Strain State

130

8.6 Wave Form

132

8.7 Creep and Stress Relaxation

133

8.8 Frequency and Strain Rate

133

8.9 Effect of Temperature

134

8.10 Liquid Immersion

135

8.11 Recovery

136

8.12 Scragging

136

8.13 Batch Variation

136

8.14 Storage

137

Acknowledgements

137

References

137

9 Fitting the Strain-Life Curve

138

9.1 Introduction

138

9.2 Development of an Equation for N in ?a , R and T

138

9.3 The Strain-Life Curve Equation with Nagel’s Equation for Temperature

141

9.4 Employing the Simple Empirical Formula for Temperature

142

Acknowledgements

143

References

144

10 Fatigue Life Estimation

146

10.1 Introduction

146

10.2 Single Wave Form, the ?-N Method

146

10.3 The Miner’s Number

147

10.4 The Deterministic Fatigue Spectrum

147

10.5 Sample Calculation of the Miner’s Number

148

10.6 White Noise

149

10.6.1 Rainflow Counting

150

11 Fatigue Crack Growth and Tearing Energy

154

11.1 Introduction

154

11.2 Griffith Strain Energy Release Rate

154

11.2.1 Griffith Criterion

154

11.2.2 Derivation

154

11.2.3 Griffith Condition for Fracture

157

11.2.4 Critical Assumptions

157

11.3 Rivlin and Thomas and Tearing Energy

158

11.3.1 Modification of Griffith’s Criterion for Fracture ofMetals

158

11.3.2 Application to Rubber

158

11.3.3 State of Critical Assumptions

160

11.4 Shortcut Formulas for T

161

11.5 Tearing Energy Applied to Fatigue Crack Growth

162

11.5.1 Pioneering Developments in Fatigue

162

11.5.2 The Change in Definition of Tearing Energy

162

11.6 Limitations

163

11.6.1 Fatigue Crack Growth Parameter

163

11.6.2 Cycles to Failure by T or ?a ?

165

11.7 Summary and Conclusions

167

Acknowledgements

168

References

168

Appendix I. Rubber Nomenclature

170

Appendix 2. Fatigue Terminology

178

Appendix 3. English to Metric Conversion

188

Appendix 4. Fitting the Strain-Life Curve

190

Appendix 5. Derivation of Tearing Energy Equations

198

Appendix 6. Derivation of Equations for Spherical Elastomer Bearings

204

Index

224

 

© 2009-2024 ciando GmbH