Praxisbuch FEM mit ANSYS Workbench - Einführung in die lineare und nichtlineare Mechanik. Mit 30 Übungsbeispielen

Christof Gebhardt

Praxisbuch FEM mit ANSYS Workbench

Einführung in die lineare und nichtlineare Mechanik. Mit 30 Übungsbeispielen

2018

442 Seiten

Format: PDF, ePUB

E-Book: €  53,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446457409

 

1 Vorteile der simulationsgetriebenen Produktentwicklung

Herausforderungen

Das Umfeld, in dem sich die heutige Produktentwicklung befindet, erfährt immer schnellere Zyklen. Die Anforderungen von Kundenseite steigen, die Komplexität von technischen Systemen nimmt zu. Steigende Variantenvielfalt und höhere Qualitätsanforderungen zwingen zu einer verbesserten Produktqualität. Gleichzeitig treten neue Konkurrenten auf den Weltmarkt, welche die traditionelle Produktentwicklung zu deutlich niedrigeren Kosten bewerkstelligen können.

Um sich unter diesen verschärften Wettbewerbsbedingungen behaupten zu können, müssen alle Anstrengungen unternommen werden,

  • die Entwicklungszeiten zu verringern,

  • die Herstellkosten zu senken,

  • die Innovation und Kreativität zu steigern,

  • und eine höhere Qualität zu erzielen.

Entwicklungszeit

Die Verkürzung der Entwicklungszeit erlaubt es, mit einem Produkt schneller am Markt zu sein, und ermöglicht einen schnelleren Produktwandel. Besonders bedeutsam ist eine rasche Prototypenentwicklung. Prof. Bullinger stellte in der Zeitschrift Technica fest, dass häufig 25 % der Entwicklungszeit für die Erstellung von Prototypen aufgewendet wird und dass bei 60 % der Prototypen die Fertigungszeit mehrere Monate in Anspruch nimmt.

1.1 Zahl der Prototypen reduzieren

Zahl der Prototypen reduzieren

Die FEM-Simulation erlaubt es, die Anzahl der Prototypen deutlich zu reduzieren. Bereits während der Entwicklung können in frühen Phasen des Entwurfs die wesentlichen Eigenschaften überprüft werden. Gerät z. B. der Maschinentisch einer Werkzeugmaschine in Resonanz, weil die Eigenfrequenz in der Nähe der Anregungsfrequenz des Antriebes liegt, sind tief greifende Änderungen notwendig. Anstatt solche Probleme erst am realen Prototypen festzustellen, wo Änderungen sehr zeit- und kostenintensiv sind, werden durch entwicklungsbegleitende Überprüfungen per FEM Problemzonen noch vor dem Bau eines Prototypen sichtbar. Mit dem Einsatz der FEM-Simulation werden weniger Änderungen notwendig und die Entwicklungszeiten verkürzen sich dadurch drastisch.

Aufwendige Versuche

Ein wichtiger Aspekt, der zur Verkürzung der Entwicklungszeit beiträgt, ist, dass problematische Bereiche nicht mühsam in mehreren Versuchen ermittelt werden müssen. Im realen Versuch tritt beispielsweise bei einer bestimmten statischen Belastung oder nach einer bestimmten Anzahl von Lastzyklen ein Versagen eines Bauteils auf. Damit ist in der Regel der Versuch zu Ende und die maximale ertragbare Last ermittelt. Man sieht, welcher Bereich das Versagen verursacht hat (z. B. Anriss an einer Kerbe; Messpunkt 3, siehe Bild 1.1), und kann entsprechende Konstruktionsänderungen vornehmen. In einem nächsten Versuch wird dann die maximal ertragbare Last der verbesserten Struktur ermittelt. Leider kann es jetzt geschehen, dass die neue, verbesserte Variante nur knapp bessere Werte ergibt, da das Spannungsniveau in anderen Bereichen der Struktur (hier Messpunkt 1, siehe Bild 1.1) ähnlich hoch ist, im ersten Versuch jedoch nicht erkannt werden konnte. Der große Vorteil des Versuchs ist, dass er für klare Versuchsbedingungen genaue Werte ergibt, ein Gesamtüberblick über das Bauteilverhalten gerade hinsichtlich Festigkeit ist jedoch schwer zu erreichen. Selbst bei Verwendung von Dehnmessstreifen muss die Lage der DMS im Vorfeld schon richtig eingeschätzt werden, weil man auch mit falscher oder fehlender Positionierung eines Messpunktes kritische Bereiche nicht erkennt.

 

Bild 1.1 Ertragbare Belastung an vier verschiedenen Messpunkten

Weniger Durchläufe

Im Vergleich hierzu liefert die Berechnung nach der Finite-Elemente-Methode einen besseren Gesamtüberblick. Innerhalb der zu untersuchenden Baugruppe werden überall die Spannungen ermittelt und dargestellt, sodass in einem einzigen Durchlauf nicht nur ein einziges lokales Spannungsmaximum erkannt und bearbeitet werden kann, sondern auch alle weiteren Bereiche, deren Spannungsniveau sich in kritischen Regionen befindet.

Ausgelagerte Fertigung

Bei der Breyton Design GmbH entwickelt ein kleines Team von wenigen Ingenieuren Leichtmetallräder und Fahrwerkskomponenten für die Automobilindustrie. Gefertigt wird in Osteuropa, Test und Abnahme finden in Deutschland statt. Vor der Einführung der FEM-Simulation musste jede Design-Verifikation an realen Prototypen mit einem Biegeumlaufversuch durchgeführt werden. Die Zeit zur Beschaffung von Guss-Prototypen war und ist zeitaufwendig; mehrere Wochen sind hier nicht unüblich. Auch die Durchführung der Versuche braucht einige Zeit: Um die Streuung der im Versuch ermittelten Lebensdauer auszumerzen, werden mehrere Tests an gleichen Bauteilen durchgeführt. Insgesamt führte der hohe Aufwand bei der Beschaffung der Prototypen und im Versuch dazu, dass die Entwickler mit dieser traditionellen Methode erst sehr spät im Entwicklungsprozess auf eine zu geringe Lebensdauer aufmerksam wurden.

Virtueller Versuch

Mit der Einführung von ANSYS Workbench wird heute ein „virtueller Biegeumlaufversuch“ direkt am 3D-CAD-Modell durchgeführt (siehe Bild 1.2). Kritische Belastungen werden so rechtzeitig erkannt. Über eine Design-Studie mit zwei bis drei konstruktiven Änderungen kann innerhalb eines halben Tages ein verbessertes, validiertes Design ermittelt werden.

 

Bild 1.2 Lebensdauerbewertung an Autofelgen

1.2 Kosten einsparen

Materialkosten

Die Kosten eines Produktes werden vielfach auch durch das Material mitbestimmt. Die Stahlpreise haben sich seit 2000 mehr als verdoppelt, der zunehmende Ressourcenbedarf wird langfristig ein sinkendes Preisniveau für Rohstoffe verhindern. Die FEM-Berechnung erlaubt es, Bauteile hinsichtlich Festigkeit zu überprüfen. Überdimensionierungen gehören damit der Vergangenheit an. Überflüssiges Material kann eingespart und das Gewicht minimiert werden.

Beispiel AGCO FENDT: Durch Optimierung des mittragenden Antriebsstrangs bei Traktoren kann Material eingespart werden.

 

Bild 1.3 Spannungsverteilung eines Traktor-Antriebsstrangs

Fertigungskosten senken

Gerade bei schnell bewegten Strukturen wie z. B. Bestückungsautomaten oder Robotern kann dadurch der Antrieb verkleinert werden, was zusätzliche Kostenreduzierungen nach sich zieht. Geringeres Gewicht erfordert geringe Antriebsleistung, sodass auch der Energieverbrauch reduziert wird. Als mögliche Alternative können kostengünstigere oder leichtere Werkstoffe (Kunststoffe, Leichtmetalle) in einer Simulation sehr schnell auf ihre Tauglichkeit getestet werden.

Die in ANSYS Workbench enthaltene Materialdatenbank ist mit einem Grundstock von Materialien verschiedener Gruppen (Metalle, Keramik etc.) ausgestattet, kann aber einfach um die unternehmensspezifisch bevorzugten Materialien erweitert werden. Vom Anbieter, der CADFEM GmbH, wird eine kostenfreie Materialdatenbank mitgeliefert, die ca. 250 vorwiegend metallische Werkstoffe enthält.

Fertigungskosten senken

Neben dem Materialeinsatz selbst spielt auch die Verarbeitung eine wichtige Rolle. Große Schweißstrukturen, bei denen Wandstärken reduziert werden können, helfen nicht nur, Gewicht einzusparen, sondern minimieren auch die Größe der Schweißnähte und damit Fertigungskosten.

1.3 Produktinnovationen fördern

Innovation und Kreativität

Durch den zunehmenden Wettbewerb muss die traditionelle Entwicklung, die auch von den (internationalen) Mitbewerbern zunehmend beherrscht wird, in den Bereichen Innovation und Kreativität gestärkt werden. Nur durch eine höhere Produktivität kann ein höheres Kostenniveau ausgeglichen werden....

 

© 2009-2023 ciando GmbH