The First Snap-Fit Handbook - Creating and Managing Attachments for Plastics Parts

Paul R. Bonenberger

The First Snap-Fit Handbook

Creating and Managing Attachments for Plastics Parts

2016

412 Seiten

Format: PDF, ePUB, Online Lesen

E-Book: €  199,99

E-Book kaufen

E-Book kaufen

ISBN: 9781569905968

 

Foreword to Third Edition

7

Preface to Third Edition

9

Foreword to Previous Editions

11

Prefaces to Previous Editions

13

Preface to First Edition

13

Preface to Second Edition

16

Contents

17

1 Introduction

25

1.1 Reader Expectations

26

1.2 Harmful Beliefs

27

1.3 Snap-Fit Technology

28

1.4 Snap-Fits and Loose Fasteners

30

1.5 Snap-Fits as Interface Systems

30

1.5.1 Feature Level

31

1.5.2 Attachment Level

31

1.6 The Attachment Level Construct© (ALC)

33

1.6.1 Attachment Level Terminology

33

1.6.2 Applying the ALC to other Attachment Methods

34

1.6.3 Required Capabilities for Snap-Fit Development

34

1.6.4 Justifying the ALC

35

1.7 Using This Book

36

1.71 Sample Parts

38

1.7.2 Snap-Fit Novices

39

1.7.3 Experienced Product Developers

40

1.7.4 Design for Assembly/Manufacturing Practitioners

40

1.7.5 Executives and Engineering Managers

41

1.8 Summary

41

2 Key Requirements

43

2.1 Constraint

43

2.2 Compatibility

45

2.3 Robustness

48

2.4 Strength

48

2.5 Summary

50

3 Introduction to the Snap-Fit Development Process

53

3.1 Concept vs. Detailed Design

54

3.2 The Value of Multiple Concepts

55

3.3 Step 0: Is a Snap-Fit Appropriate?

56

3.4 The Demand-Complexity Matrix©

60

3.5 Summary

62

4 Descriptive Elements

65

4.1 Function

65

4.1.1 Action

66

4.1.2 Purpose

67

4.1.3 Retention

67

4.1.4 Release

68

4.2 Basic Shapes

69

4.2.1 Mating-Part and Base-Part

69

4.2.2 Basic Shape Descriptions

70

4.2.3 Basic Shape Combinations

71

4.3 Engage Direction

74

4.4 Assembly Motion

76

4.5 Summary

78

5 Physical Elements: Locators

79

5.1 Protrusion-Based Locators

80

5.1.1 Pins

80

5.1.2 Prongs

81

5.1.3 Tabs

82

5.1.4 Lugs

82

5.1.5 Tracks

82

5.1.6 Cones

83

5.1.7 Wedges

83

5.1.8 Catches

84

5.2 Surface-Based Locators

84

5.2.1 Surfaces

84

5.2.2 Edges

85

5.2.3 Lands

85

5.3 Void-Based Locators

85

5.3.1 Holes

86

5.3.2 Slots

86

5.3.3 Cutouts

86

5.4 Living Hinges

87

5.5 Using Locators

87

5.5.1 Locator Pairs

87

5.5.2 Providing Constraint

89

5.5.3 Assembly Motion and Strength

90

5.5.4 Fine-Tuning

92

5.5.5 Dimensional Robustness

93

5.5.5.1 Positioning

93

5.5.5.2 Compliance

95

5.5.5.3 Datum Points

96

5.5.6 Constraint Efficiency

96

5.5.7 Mechanical Advantage and Stability

97

5.5.8 Ease of Assembly

98

5.6 Summary

98

6 Physical Elements: Locks

101

6.1 Lock Deflection and Separation Behavior

102

6.2 Lock Styles

104

6.3 Cantilever Beam Locks

105

6.3.1 Hooks

108

6.3.1.1 Hook Assembly Behavior

110

6.3.1.2 Hook Separation Behavior

112

6.3.1.3 Hooks and Retainers

115

6.3.1.4 Hooks and Prongs

116

6.3.2 Loops

117

6.3.2.1 Loop Assembly Behavior

118

6.3.2.2 Loop Separation Behavior

119

6.3.2.3 Loops and Knit Lines

120

6.3.3 Traps

122

6.3.3.1 Trap Assembly Behavior

125

6.3.3.2 Trap Separation Behavior

125

6.3.4 Low Deflection Lugs

127

6.3.5 Other Cantilever Beam Locks

128

6.4 Planar Locks

129

6.5 Torsional Locks

131

6.6 Annular Locks

131

6.7 Using Locks

132

6.7.1 Lock Pairs

132

6.7.2 Short Grip-Length and Low-Clearance Applications

133

6.7.3 High Demand Applications

134

6.7.4 Tamper Resistant Applications

135

6.7.5 The Case against Cantilever Hooks

135

6.8 Summary

137

7 Lock Strength and Decoupling

141

7.1 Level 0 No Decoupling

143

7.2 Level 1 Decoupling

144

7.3 Level 2 Decoupling

145

7.4 Level 3 Decoupling

148

7.5 Level 4 Decoupling

149

7.6 Summary

154

8 Constraint in Snap-Fit Applications

157

8.1 Perfect Constraint

158

8.2 Proper Constraint

160

8.3 Under-Constraint

161

8.4 Over and Improper Constraint

163

8.4.1 Redundant Constraint Features

164

8.4.2 Opposing Constraint Features

165

8.5 The Constraint Worksheet

169

8.6 Using the Constraint Worksheet

175

8.7 Constraint Rules

180

8.8 Summary

181

9 Physical Elements: Enhancements

183

9.1 Assembly Enhancements

184

9.1.1 Guides

185

9.1.2 Clearance

187

9.1.3 Pilots

188

9.1.4 Example – Switch Application

189

9.1.5 Example: Reflector Application

192

9.1.6 Feedback

196

9.2 Activation Enhancements

200

9.2.1 Visuals

200

9.2.2 Assists

203

9.2.3 User-Feel

204

9.3 Performance Enhancements

206

9.3.1 Guards

206

9.3.2 Retainers

207

9.3.3 Compliance

208

9.3.3.1 Local Yield

209

9.3.3.2 Elasticity

211

9.3.3.3 Isolators

211

9.3.4 Back-Up Features

211

9.4 Manufacturing Enhancements

213

9.4.1 Process-Friendly Design

214

9.4.2 Fine-Tuning Enablers

217

9.5 Summary

221

10 Applying the Snap-Fit Development Process

227

10.1 Step 1: Define the Application

228

10.2 Step 2: Benchmark

230

10.3 Step 3: Generate Multiple Concepts

234

10.3.1 Engage Direction

235

10.3.2 Assembly Motions

236

10.3.3 Identify Constraint Pairs

239

10.3.4 Add Some Enhancements

244

10.3.5 Select a Concept for Analysis

245

10.4 Step 4: Design and Analyze Features

246

10.4.1 Lock Alternatives

247

10.4.1.1 Threaded Fasteners

247

10.4.1.2 Plastic Push-In Fasteners

249

10.4.1.3 Spring-Steel Clips

250

10.5 Step 5: Confirm Design with Parts

251

10.6 Step 6: Fine-Tune the Design

254

10.7 Step 7: Snap-Fit Application Completed

255

10.8 Summary

255

11 Feature Development: Material Properties

257

11.1 Sources of Material Property Data

257

11.2 Material Property Assumptions

258

11.3 The Stress-Strain Curve

259

11.4 Determining a Design Point

263

11.4.1 Applications with Fixed Strain

263

11.4.2 Applications with Variable Strain

264

11.4.3 The Secant Modulus

266

11.4.4 Maximum Permissible Strain Data

266

11.5 Coefficient of Friction

268

11.6 Other Effects on Material Properties

270

11.7 Summary

273

12 Lock Feature Development: Rules-of-Thumb

275

12.1 Beam-Based Locks

275

12.1.1 Beam Thickness at the Base

277

12.1.2 Beam Length

279

12.1.3 Beam Thickness at the Retention Feature

280

12.1.4 Beam Width

281

12.2 Retaining Member: Catch

283

12.2.1 The Insertion Face

283

12.2.2 The Retention Face

284

12.3 Loops

286

12.4 Traps

287

12.5 Other Lock Styles

289

12.5.1 Torsional Locks

289

12.5.2 Planar Locks

289

12.5.3 More Lock Styles

290

12.6 Summary

292

13 Lock Feature Development: Calculations

293

13.1 Assumptions and Allowances

294

13.2 The Deflecting Member: Cantilever Beam

296

13.2.1 General Equations for Rectangular Sections

297

13.2.2 Constant Section Beam Bending

298

13.2.3 Adjusting the Design Strain for Stress Concentration

301

13.2.4 Calculating the Initial Beam Strain

303

13.2.5 Adjusting for Deflection at the Beam’s Base

303

13.2.6 Calculating the Initial Beam Deflection Force

307

13.2.7 Adjusting for Mating Feature/Part Deflection

307

13.2.8 Example Beam Strain and Deflection Calculations

309

13.2.9 Deflection Graphs for a Straight Beam

316

13.3 Deflecting Member: Tapered Beams

320

13.3.1 Taper Error Example

321

13.3.2 Beams Tapered in Thickness

323

13.3.3 Beams Tapered in Width

328

13.4 Beam Calculation Summary

331

13.5 Other Deflecting Member Styles

332

13.5.1 Other Beam-Based Styles: Loops and Traps

332

13.5.2 Other Styles: Torsional, Annular, and Planar Deflection

334

13.6 The Retaining Member: Catch

335

13.6.1 Lock Assembly Force

336

13.6.1.1 Adjusting for the Insertion Face Effective Angle

336

13.6.1.2 Example Assembly Force Calculations

338

13.6.1.3 Modifying the Insertion Face Profile

339

13.6.2 Catch Separation Force

343

13.6.2.1 Adjusting for the Retention Face Effective Angle

343

13.6.2.2 Example Assembly Force Calculations

345

13.6.2.3 Modifying the Retention Face Profile

347

13.7 Stationary Catches and Traps as Retaining Members

349

13.7.1.1 Other Separation Considerations

352

13.8 Using Finite Element Analysis

353

13.9 Calculation Spreadsheets

354

13.10 Summary

357

14 Diagnosing Snap-Fit Problems

361

14.1 Common Snap-Fit Mistakes

363

14.2 Attachment Level Diagnosis

364

14.3 Feature Level Diagnosis

365

14.4 Summary

371

15 Gaining a Competitive Advantage in Snap-Fit Technology

373

15.1 Terminology

375

15.2 Managing Expectations

376

15.3 Harmful Beliefs

377

15.4 The Demand-Complexity Matrix

379

15.5 The Snap-Fit Capability Plan

384

15.5.1 Vision, Mission, and Values

385

15.5.2 Objectives

385

15.5.3 Strategies

385

15.6 Initiatives for Getting Started

387

15.6.1 Provide Education and Training

388

15.6.2 Provide Technical Resources

388

15.6.3 Identify Low-Impact Applications as a Starting Point

388

15.6.4 Use Physical Models

389

15.6.5 Provide Benchmarking Opportunities

389

15.6.6 Include Snap-Fit Technical Requirements in the Bidding and Purchasing Processes

390

15.6.7 Identify Intermediate Applications

392

15.7 Initiatives for Organizational Capability

393

15.7.1 Identify and Empower a Snap-Fit Champion

393

15.7.2 Identify and Empower a Snap-Fit Technical Leader

393

15.7.3 Make Snap-Fit Technology Visible in the Organization

394

15.7.4 Link Snap-Fits to Other Business Strategies

394

15.7.5 Create and Maintain a Library of Preferred Concepts

394

15.7.5.1 Example of a Preferred Concepts Initiative

396

15.7.6 Have a Model of the Snap-Fit Technical Domain

399

15.7.7 Reward Teamwork and Make Snap-Fits Interesting

399

15.7.8 Identify Supportive Customers and Suppliers

399

15.8 Summary

400

Appendix – Resources

403

About the Author

407

Index

409

 

© 2009-2024 ciando GmbH