Additive Manufacturing - 3D Printing for Prototyping and Manufacturing

Andreas Gebhardt, Jan-Steffen Hötter

Additive Manufacturing

3D Printing for Prototyping and Manufacturing

2016

611 Seiten

Format: PDF, ePUB

E-Book: €  149,99

E-Book kaufen

E-Book kaufen

ISBN: 9781569906644

 

Foreword

7

About the Authors

9

Acknowledgements

11

Contents

13

1 Basics, Definitions, and Application Levels

23

1.1 Systematics of Manufacturing Technologies

23

1.2 Systematics of Layer Technology

24

1.2.1 Application of Layer Technology: Additive Manufacturing and 3D Printing

25

1.2.2 Characteristics of Additive Manufacturing

25

1.3 Hierarchical Structure of Additive Manufacturing Processes

28

1.3.1 Rapid Prototyping

29

1.3.2 Rapid Manufacturing

31

1.3.2.1 Rapid Manufacturing—Direct Manufacturing

31

1.3.2.2 Rapid Manufacturing—Rapid Tooling (Direct Tooling— Prototype Tooling)

32

1.3.3 Related Nonadditive Processes: Indirect or Secondary Rapid Prototyping Processes

32

1.3.4 Rapid Prototyping or Rapid Manufacturing?

33

1.3.5 Diversity of Terms

34

1.3.6 How Fast Is Rapid?

35

1.4 Integration of Additive Manufacturing in the Product Development Process

35

1.4.1 Additive Manufacturing and Product Development

35

1.4.2 Additive Manufacturing for Low-Volume and One-of-a-Kind Production

37

1.4.3 Additive Manufacturing for Individualized Production

37

1.5 Machines for Additive Manufacturing

38

2 Characteristics of the Additive Manufacturing Process

43

2.1 Basic Principles of the Additive Manufacturing Process

43

2.2 Generation of Layer Information

48

2.2.1 Description of the Geometry by a 3D Data Record

48

2.2.1.1 Data Flow and Interfaces

48

2.2.1.2 Modeling 3D Bodies in a Computer by Means of 3D CAD

50

2.2.1.3 Generating 3D Models from Measurements

54

2.2.2 Generation of Geometrical Layer Information on Single Layers

55

2.2.2.1 STL Format

56

2.2.2.2 CLI/SLC Format

60

2.2.2.3 PLY and VRML Formats

63

2.2.2.4 AMF Format

65

2.3 Physical Principles for Layer Generation

66

2.3.1 Solidification of Liquid Materials

67

2.3.1.1 Photopolymerization?Stereolithography (SL)

67

2.3.1.2 Basic Principles of Polymerization

68

2.3.2 Generation from the Solid Phase

79

2.3.2.1 Melting and Solidification of Powders and Granules: Laser Sintering (LS)

79

2.3.2.2 Cutting from Foils: Layer Laminate Manufacturing (LLM)

87

2.3.2.3 Melting and Solidification out of the Solid Phase: Fused Layer Modeling (FLM)

88

2.3.2.4 Conglutination of Granules and Binders: 3D Printing

91

2.3.3 Solidification from the Gas Phase

93

2.3.3.1 Aerosol Printing Process

93

2.3.3.2 Laser Chemical Vapor Deposition (LCVD)

94

2.3.4 Other Processes

95

2.3.4.1 Sonoluminescence

95

2.3.4.2 Electroviscosity

96

2.4 Elements for Generating the Physical Layer

96

2.4.1 Moving Elements

96

2.4.1.1 Plotter

96

2.4.1.2 Scanner

97

2.4.1.3 Simultaneous Robots (Delta Robots)

98

2.4.2 Generating and Contouring Elements

98

2.4.2.1 Laser

99

2.4.2.2 Nozzles

101

2.4.2.3 Extruder

103

2.4.2.4 Cutting Blade

104

2.4.2.5 Milling Cutter

104

2.4.3 Layer-Generating Element

105

2.5 Classification of Additive Manufacturing Processes

106

2.6 Summary Evaluation of the Theoretical Potentials of Rapid Prototyping Processes

108

2.6.1 Materials

109

2.6.2 Model Properties

110

2.6.3 Details

111

2.6.4 Accuracy

112

2.6.5 Surface Quality

112

2.6.6 Development Potential

113

2.6.7 Continuous 3D Model Generation

113

3 Machines for Rapid Prototyping, Direct Tooling, and Direct Manufacturing

115

3.1 Polymerization: Stereolithography (SL)

119

3.1.1 Machine-Specific Basis

119

3.1.1.1 Laser Stereolithography

119

3.1.1.2 Digital Light Processing

129

3.1.1.3 PolyJet and MultiJet Modeling and Paste Polymerization

130

3.1.2 Overview: Polymerization, Stereolithography

130

3.1.3 Stereolithography Apparatus (SLA), 3D Systems

132

3.1.4 STEREOS, EOS

142

3.1.5 Stereolithography, Fockele & Schwarze

143

3.1.6 Microstereolithography, microTEC

144

3.1.7 Solid Ground Curing, Cubital

147

3.1.8 Digital Light Processing, Envisiontec

148

3.1.9 Polymer Printing, Stratasys/Objet

154

3.1.10 Multijet Modeling (MJM), ProJet, 3D Systems

159

3.1.11 Digital Wax

162

3.1.12 Film Transfer Imaging, 3D Systems

165

3.1.13 Other Polymerization Processes

168

3.1.13.1 Paste Polymerization, OptoForm

168

3.2 Sintering/Selective Sintering: Melting in the Powder Bed

168

3.2.1 Machine-Specific Basic Principles

168

3.2.2 Overview: Sintering and Melting

173

3.2.3 Selective Laser Sintering, 3D Systems/DTM

175

3.2.4 Laser Sintering, EOS

187

3.2.5 Laser Melting, Realizer GmbH

198

3.2.6 Laser Sintering, SLM Solutions

202

3.2.7 Laser Melting, Renishaw Ltd.

204

3.2.8 Laser Cusing, Concept Laser

207

3.2.9 Direct Laser Forming, TRUMPF

213

3.2.10 Electron Beam Melting

214

3.2.11 Selective Mask Sintering (SMS), Sintermask

219

3.2.12 Laser Sintering, Phenix

222

3.3 Coating: Melting with the Powder Nozzle

225

3.3.1 Process Principle

225

3.3.1.1 Concepts of Powder Nozzles

227

3.3.1.2 Process Monitoring and Control

228

3.3.2 Laser-Engineered Net Shaping (LENS), Optomec

228

3.3.3 Direct Metal Deposition (DMD), DM3D Technology (TRUMPF)

231

3.4 Layer Laminate Manufacturing (LLM)

235

3.4.1 Overview of Layer Laminate Manufacturing

235

3.4.2 Machine-Specific Basics

236

3.4.3 Laminated Object Manufacturing (LOM), Cubic Technologies

240

3.4.4 Rapid Prototyping Systems (RPS), Kinergy

245

3.4.5 Selective Adhesive and Hot Press Process (SAHP), Kira

246

3.4.6 Layer Milling Process (LMP), Zimmermann

247

3.4.7 Stratoconception, rp2i

247

3.4.8 Paper 3D Printing, MCor

248

3.4.9 Plastic Sheet Lamination, Solido

250

3.4.10 Other Layer Laminate Methods

253

3.4.10.1 Parts of Metal Foils: Laminated Metal Prototyping

253

3.5 Extrusion: Fused Layer Modeling (FLM)

254

3.5.1 Overview of Extrusion Processes

254

3.5.2 Fused Deposition Modeling (FDM), Stratasys

255

3.5.3 Wax Printers, Solidscape

266

3.5.4 Multijet Modeling (MJM), ThermoJet, 3D Systems

269

3.6 Three-Dimensional Printing (3DP)

270

3.6.1 Overview: 3D Printing

270

3.6.2 3D Printer, 3D Systems, and Z Corporation

270

3.6.3 Metal and Molding Sand Printer, ExOne

275

3.6.3.1 Metal Line: Direct Metal Printer

277

3.6.3.2 Molding Sand Line: Direct Core and Mold-Making Machine

279

3.6.4 Direct Shell Production Casting (DSPC), Soligen

281

3.6.5 3D Printing System, Voxeljet

285

3.6.6 Maskless Mesoscale Material Deposition (M3D), Optomec

289

3.7 Hybrid Processes

291

3.7.1 Controlled Metal Buildup (CMB)

292

3.7.2 Laminating and Ultrasonic Welding: Ultrasonic Consolidation, Solidica

294

3.8 Summary Evaluation of Rapid Prototyping Processes

298

3.8.1 Characteristic Properties of AM Processes Compared to Conventional Processes

298

3.8.2 Accuracy

301

3.8.3 Surfaces

304

3.8.4 Benchmark Tests and User Parts

307

3.9 Planning Targets

310

3.10 Follow-up Processes

311

3.10.1 Target Material: Plastics

311

3.10.2 Target Material: Metal

312

4 Rapid Prototyping

313

4.1 Classification and Definition

313

4.1.1 Properties of Prototypes

313

4.1.2 Characteristics of Rapid Prototyping

314

4.2 Strategic Aspects for the Use of Prototypes

315

4.2.1 Product Development Steps

315

4.2.2 Time to Market

316

4.2.3 Front Loading

317

4.2.4 Digital Product Model

320

4.2.5 The Limits of Physical Modeling

321

4.2.6 Communication and Motivation

322

4.3 Operational Aspects in the Use of Prototypes

323

4.3.1 Rapid Prototyping as a Tool for Fast Product Development

323

4.3.1.1 Models

323

4.3.1.2 Model Classes

324

4.3.1.3 Model Classes and Additive Processes

327

4.3.1.4 Assignment of Model Classes and Model Properties to the Families of Additive Production Processes

331

4.3.2 Applications of Rapid Prototyping in Industrial Product Development

334

4.3.2.1 Example: Housing of a Pump

334

4.3.2.2 Example: Office Lamp

335

4.3.2.3 Example: Recessed Lighting Socket

339

4.3.2.4 Example: Model Digger Arm

340

4.3.2.5 Example: LCD Projector

344

4.3.2.6 Example: Capillary Bottom for Flower Pots

345

4.3.2.7 Example: Casing for a Coffeemaker

346

4.3.2.8 Example: Intake Manifold of a Four-Cylinder Engine

347

4.3.2.9 Example: Cocktail Glass

348

4.3.2.10 Example: Mirror Triangle

349

4.3.2.11 Example: Convertible Top

349

4.3.3 Rapid Prototyping Models for the Visualization of 3D Data

353

4.3.4 Rapid Prototyping in Medicine

354

4.3.4.1 Characteristics of Medical Models

354

4.3.4.2 Anatomic Facsimile Models

355

4.3.4.3 Example: Anatomic Facsimiles for a Reconstructive Osteotomy

357

4.3.5 Rapid Prototyping in Art, Archaeology, and Architecture

358

4.3.5.1 Model Making in Art and Design, General

358

4.3.5.2 Example of Art: Computer Sculpture, Georg Glückman

359

4.3.5.3 Example of Design: Bottle Opener

359

4.3.5.4 Applied Art: Statuary and Sculpture

361

4.3.5.5 Example of Archaeology: Bust of Queen Teje

362

4.3.5.6 Model Building in Architecture, General

363

4.3.5.7 Example of Architecture: German Pavilion at Expo ’92

364

4.3.5.8 Example of Architecture: Ground Zero

364

4.3.5.9 Example of Architectural Monuments: Documentation of Buildings Relevant to Architectural History

366

4.3.6 Rapid Prototyping for the Evaluation of Calculation Methods

367

4.3.6.1 Photoelastic and Thermoelastic Stress Analysis

367

4.3.6.2 Example: Photoelastic Stress Analysis for a Cam Rod in the Engine of a Truck

370

4.3.6.3 Example: Thermoelastic Stress Analysis for Verifying the Stability of a Car Wheel Rim

371

4.4 Outlook

374

5 Rapid Tooling

375

5.1 Classification and Definition of Terms

375

5.1.1 Direct and Indirect Methods

376

5.2 Properties of Additive Manufactured Tools

377

5.2.1 Strategic Aspects for the Use of Additive Manufactured Tools

378

5.2.1.1 Speed

378

5.2.1.2 Implementation of New Technical Concepts

378

5.2.2 Design Properties of Additive Manufactured Tools

380

5.2.2.1 Prototype Tools

380

5.2.2.2 Supply of Data

383

5.3 Indirect Rapid Tooling Processes: Molding Processes and Follow-up Processes

385

5.3.1 Suitability of AM Processes for the Manufacture of Master Patterns for Subsequent Processes

385

5.3.2 Indirect Methods for the Manufacture of Tools for Plastic Components

387

5.3.2.1 Casting in Soft Tools or Molds

387

5.3.2.2 Casting into Hard Tools

392

5.3.2.3 Other Molding Techniques for Hard Tools

396

5.3.3 Indirect Methods for the Manufacture of Metal Components

397

5.3.3.1 Investment Casting with AM Process Steps

397

5.3.3.2 Tools by Investment Casting of Rapid Prototyping Master Models

400

5.4 Direct Rapid Tooling Processes

401

5.4.1 Prototype Tooling: Tools Based on Plastic Rapid Prototyping Models and Methods

401

5.4.1.1 ACES Injection Molding

401

5.4.1.2 Deep Drawing or Thermoforming

402

5.4.1.3 Casting of Rapid Prototyping Models

403

5.4.1.4 Manufacture of Cores and Molds for Metal Casting

404

5.4.2 Metal Tools Based on Multilevel AM Processes

405

5.4.2.1 Selective Laser Sintering of Metals: IMLS by 3D Systems

405

5.4.2.2 Paste Polymerization: OptoForm

406

5.4.2.3 3D Printing of Metals: ExOne

406

5.4.3 Direct Tooling: Tools Based on Metal Rapid Prototype Processes

407

5.4.3.1 Multicomponent Metal Powder Laser Sintering

407

5.4.3.2 Single-Component Metal Powder Methods: Sintering and Additive Manufacturing

408

5.4.3.3 Laser Generating with Powder and Wire

413

5.4.3.4 Layer Laminate Process, Metal Blade Tools, Laminated Metal Tooling

415

5.5 Future Prospects

416

6 Direct Manufacturing: Rapid Manufacturing

417

6.1 Classification and Definition of Terms

417

6.1.1 Terms

418

6.1.2 From Rapid Prototyping to Rapid Manufacturing

419

6.1.3 Workflow for Direct Manufacturing

420

6.1.4 Requirements for Direct Manufacturing

420

6.2 Potential for Additive Manufacturing of End Products

421

6.2.1 Increased Design Freedom

421

6.2.1.1 Advanced Design and Structural Opportunities

421

6.2.1.2 Functional Integration

422

6.2.1.3 Novel Design Elements

423

6.2.2 Production of Traditionally Not Producible Products

423

6.2.3 Variation of Mass Products

424

6.2.4 Personalization of Mass Products

425

6.2.4.1 Passive Personalization: Manufacturer Personalization

426

6.2.4.2 Active Personalization: Customer Personalization

428

6.2.5 Realization of New Materials

429

6.2.6 Realization of New Manufacturing Strategies

429

6.2.7 Design of New Labor and Living Alternatives

430

6.3 Requirements on Additive Manufacturing for Production

431

6.3.1 Requirements on Additive Manufacturing of a Part

432

6.3.1.1 Process

432

6.3.1.2 Materials

433

6.3.1.3 Organization

435

6.3.1.4 Design

435

6.3.1.5 Quality Assurance

436

6.3.1.6 Logistics

436

6.3.2 Requirements for Additive Mass Production with Current Methods

436

6.3.2.1 Process

437

6.3.2.2 Materials

439

6.3.2.3 Organization

439

6.3.2.4 Design

440

6.3.2.5 Quality Assurance

440

6.3.2.6 Logistics

440

6.3.3 Future Efforts in Additive Series Production

440

6.3.3.1 Process

441

6.3.3.2 Materials

443

6.3.3.3 Organization

444

6.3.3.4 Design

444

6.3.3.5 Quality Assurance

445

6.3.3.6 Logistics

446

6.4 Implementation of Rapid Manufacturing

446

6.4.1 Additive Manufacturing Machines as Elements of a Process Chain

447

6.4.2 Additive Machines for Complete Production of Products

448

6.4.2.1 Industrial Complete Production

448

6.4.2.2 Individual Complete Production (Personal Fabrication)

450

6.5 Application Fields

451

6.5.1 Application Fields for Materials

452

6.5.1.1 Metallic Materials and Alloys

452

6.5.1.2 High-Performance Ceramics

453

6.5.1.3 Plastics

454

6.5.1.4 New Materials

455

6.5.2 Application Fields by Industry

455

6.5.2.1 Tooling

455

6.5.2.2 Casting

457

6.5.2.3 Medical Equipment and Aids, Medical Technology

460

6.5.2.4 Design and Art

465

6.6 Summary

470

7 Safety and Environmental Protection

473

7.1 Labor Agreements for the Operation and Production of Additive Manufacturing Machines and the Handling of the Corresponding Material

474

7.2 Annotations to Materials for Additive Manufacturing

475

7.3 Annotations for Using Additive Manufactured Components

476

8 Economic Aspects

479

8.1 Strategic Aspects

480

8.1.1 Strategic Aspects of the Use of AM Methods in Product Development

480

8.1.1.1 Qualitative Approaches

480

8.1.1.2 Quantitative Approaches

481

8.2 Operative Aspects

482

8.2.1 Establishing the Optimal Additive Manufacturing Process

482

8.2.2 Establishing the Costs of Additive Manufacturing Processes

483

8.2.2.1 Variable Costs

484

8.2.2.2 Fixed Costs

486

8.2.3 Characteristics of Additive Manufacturing and Its Impacts on Economy

489

8.2.3.1 Construction Time

489

8.2.3.2 Lot Sizes and Use of Construction Space

489

8.2.3.3 Utilization

490

8.2.3.4 Material Consumption

490

8.2.3.5 Process Safety

491

8.2.3.6 Construction Speed

491

8.2.3.7 Technical Progress and Model Refinement

493

8.2.3.8 Service

493

8.3 Make or Buy?

494

9 Future Rapid Prototyping Processes

497

9.1 Microcomponents

497

9.1.1 Microcomponents Made of Metal and Ceramic

497

9.1.2 Microcomponents Made of Metal and Ceramics by Laser Melting

498

9.1.2.1 Melting Process in Selective Laser Melting

498

9.1.2.2 Microstructures of Metal Powder

499

9.1.2.3 Microstructures of Ceramic Powder

502

9.2 Contour Crafting

504

9.3 D-Shape Process

506

9.4 Selective Inhibition of Sintering (SIS)

509

9.4.1 The SIS-Polymer Process

509

9.4.2 The SIS-Metal Process

511

9.5 Free Molding

513

9.6 Freeformer

514

Appendix

515

Glossary

591

Bibliography

597

Index

603

Leere Seite

2

 

© 2009-2024 ciando GmbH