Resistance and Stability of Polymers

Gottfried Wilhelm Ehrenstein, Sonja Pongratz

Resistance and Stability of Polymers

2013

1460 Seiten

Format: PDF, Online Lesen

E-Book: €  399,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446437098

 

Preface

8

Table of Contents

10

1 Principles of Aging

26

1.1 An Introduction to Polymers

29

1.1.1 Thermoplastics

29

1.1.2 Thermoplastic Elastomers

31

1.1.3 Elastomers

31

1.1.4 Thermosets (EP Resins)

32

1.1.4.1 Epoxy Resins (EP Resins)

33

1.1.4.2 Phenolic Resins (PF Resin)

40

1.1.4.3 Unsaturaded Polyesters (UP Resins)

44

1.1.4.4 Vinyl Ester Resin (VE Resin)

48

1.2 General Remarks, Definition of Terms

51

1.2.1 Definition of Aging

51

1.2.2 Additional Concepts

53

1.3 Short and Long-Term Behavior

54

1.3.1 Softening Behavior

54

1.3.2 Aging Behavior

55

1.3.3 Chemical Aging Processes (Chemical Degradation)

56

1.3.4 Physical Aging Processes and Physical Aging

57

1.3.4.1 Physical Aging Processes

57

1.3.4.2 Physical Aging

59

1.4 Influencing Factors

60

1.4.1 Effect of Temperature

62

1.4.1.1 Accelerative Effect of Temperature

62

1.4.1.2 Chemical Degradation

64

1.4.1.3 Physical Aging Processes

70

1.4.2 Effects of Oxygen

70

1.4.2.1 Chemical Degradation

71

1.4.2.2 Physical Aging Processes - Chemo-Crystallization

76

1.4.2.3 Effects of Ozone

77

1.4.3 Influence of Water

79

1.4.3.1 Chemical Degradation (Hydrolysis)

79

1.4.3.2 Physical Aging Processes

80

1.4.3.3 Mechanical Effects of Water

80

1.4.4 Influence of Mechanical Load

81

1.4.5 Influence of Chemical and Physical Structure

83

1.4.5.1 Influence of Chemical Structure

83

1.4.5.2 Influence of Physical Structure

85

1.4.6 Influence of Production Method, Catalyst Residue, and Metallic Contaminations

89

1.4.7 Additives

90

1.4.7.1 Glass Fibers

90

1.4.7.2 Fillers

91

1.4.7.3 Pigments

91

1.4.7.4 Influence of Chemical Purity

94

1.4.7.5 Flame Retardation Using Halogen Compounds

94

1.4.8 Effect of Radiation

94

1.4.8.1 Ultraviolet Radiation

94

1.4.8.2 Ionizing Radiation

97

1.4.9 Atmospheric Effects

97

1.4.9.1 UV Light

98

1.4.9.2 Temperature

98

1.4.9.3 Humidity, Water

100

1.4.9.4 Corrosive Gases

101

1.4.9.5 Solid Contaminations

104

1.4.9.6 Material History

104

1.4.10 Influence of Chemicals

105

1.4.10.1 Chemical Media Influence, Solvolysis

106

1.4.10.2 Physical Media Influence

106

1.4.11 Biological Influences

107

1.5 Influence of Processing and Application

107

1.5.1 Aging during Processing

109

1.5.2 Aging during Service

110

1.6 Service Life Prediction

113

1.6.1 Prerequisites for Service Life Predictions

114

1.6.1.1 Determining Influencing Factors

114

1.6.1.2 Characterizing Damage Condition

114

1.6.1.3 Range of Extrapolation

114

1.6.2 Models for Service Life Prediction

115

1.6.2.1 Phenomenological Description of Aging

115

1.6.2.2 Standardized Processes

117

1.6.2.3 Models for Changes in Properties with Time

117

1.6.2.4 Arrhenius Equation

119

1.6.2.5 Time-Temperature Shift

121

1.6.3 Dimensioning to Meet a Specific Service Life

129

1.6.3.1 Reduction Factors

129

1.6.3.2 Service Life for Technical Parts Under Mainly Static Loads

142

1.6.3.3 Service Life Under Dynamic Load

150

1.6.3.4 Service Life of Pipes

163

2 Testing Methods

164

2.1 General Remarks

168

2.1.1 Methods for Testing Service Life

168

2.1.1.1 Simulation of Actual Conditions

169

2.1.1.2 Accelerated Tests

169

2.1.1.3 Equivalence of Radiant Energy Effect

170

2.1.1.4 Parallel Aging

170

2.1.2 Aging Criteria

171

2.1.3 Measurement Methods

172

2.1.3.1 Appearance and Surface Properties

173

2.1.3.2 Mechanical Properties

176

2.1.3.3 Change in Chemical (Molecular) Structure

176

2.1.3.4 Measuring the Effectiveness of Antioxidants

179

2.1.3.5 Identification of Stabilizers and Their Concentration

184

2.1.3.6 Change in Physical Structure

184

2.1.3.7 Additional Methods

186

2.2 Weathering

186

2.2.1 Selecting a Testing Method

187

2.2.2 Influencing Factors

188

2.2.2.1 Specimen Color

188

2.2.2.2 Radiation

189

2.2.2.3 Temperature

192

2.2.2.4 Moisture

192

2.2.2.5 Climates

193

2.2.2.6 Boundary Layer Climates

194

2.2.2.7 Additional Influencing Factors in Weathering

196

2.2.3 Natural Weathering

197

2.2.3.1 Outdoor Weathering

197

2.2.3.2 Irradiation in Field Tests Under Window Glass

198

2.2.3.3 Others

199

2.2.4 Artificial Weathering

199

2.2.4.1 Irradiation Sources

201

2.2.4.2 Test Specifications

206

2.2.4.3 Process Monitoring Equipment

209

2.2.5 Comparability of Outdoor Weathering and Artificial Weathering

210

2.2.6 Simulation of Acid Precipitation: ADF Test

212

2.2.7 Light Exposure and Weathering of Foam Materials

215

2.2.8 Weathering of Rubber

215

2.2.8.1 Static Ozone Chamber Test

217

2.2.8.2 Dynamic Ozone Chamber Test

217

2.3 Resistance to Ionizing Radiation

218

2.4 Thermal and Thermal Oxidative Resistance

219

2.4.1 Short-Term Temperature Influence

219

2.4.2 Long-Term Temperature Influence

219

2.4.2.1 Selecting a Test Method

220

2.4.2.2 Oven Aging

220

2.4.2.3 Oxidative Induction Time and Temperature (OIT)

225

2.4.2.4 Creep Rupture Tests

226

2.4.2.5 Thermal-Oxidative Resistance of Elastomers

226

2.5 Chemical Resistance

229

2.5.1 Definition of Chemical Resistance

229

2.5.2 Field Tests and Experience

230

2.5.3 Immersion Test

230

2.5.4 Creep Rupture Tests

233

2.5.5 Stress-Cracking Resistance

235

2.5.5.1 Stress States in Component Parts

236

2.5.5.2 Stress Cracking Resistance of Plastics under Media Contact

239

2.6 Biological Resistance

247

2.6.1 Testing Resistance to Microorganisms

247

2.6.2 Compostability of Biodegradable Plastics

248

2.6.2.1 Framing Standards for Product Requirements

249

2.6.2.2 Standards Describing Testing Procedures

255

2.6.3 Biocompatibility Tests

263

2.7 Standards, UL Cards

266

2.7.1 Standards

266

2.7.1.1 General Standards

266

2.7.1.2 Weathering

269

2.7.1.3 Ionizing Radiation

274

2.7.1.4 Thermal and Thermal Oxidative Resistance

274

2.7.1.5 Chemical Resistance

276

2.7.1.6 Biological Resistance

278

2.7.2 Plastics Recognition Yellow Cards

280

2.8 Catalogue of Requirements

282

2.8.1 Apparatus, Containers, Pipes, Tanks

282

2.8.2 Building Construction

284

2.8.3 Electrical Engineering

286

2.8.3.1 Thermal Aging in Cables

286

2.8.3.2 Stress Cracking Resistance in Cables

286

2.8.4 Automotive

287

2.8.4.1 Loads on Vehicles

288

2.8.4.2 Tests for Weathering Resistance

291

2.8.4.3 Airbag Modules

292

2.8.4.4 PUR Semi-Rigid Foam

293

2.8.4.5 Graying Test

293

2.8.4.6 Environmental Simulation Tests for Fuel-Carrying Plastics Components

293

2.8.5 Medical Technology

296

2.8.6 Rubber and Plastic Hoses

296

3 Stabilization

298

3.1 Basic Principles

301

3.1.1 Market Development

301

3.1.2 Basic Principles of Stabilization

302

3.1.3 Influencing Factors

304

3.1.3.1 Fillers

304

3.1.3.2 Noxious Gases

304

3.1.3.3 Effect of Acids

304

3.2 Antioxidants

304

3.2.1 Primary Antioxidants (H Donors and Radical Interceptors)

305

3.2.1.1 Phenolic Antioxidants

306

3.2.1.2 Lactones

307

3.2.1.3 Sterically Hindered Amines (HAS)

308

3.2.1.4 Aromatic Amines

309

3.2.1.5 Hydroxylamines

309

3.2.2 Secondary Antioxidants (Hydroperoxide Decomposers)

309

3.2.2.1 Phosphites and Phosphonites

310

3.2.2.2 Thio Stabilizers

312

3.2.3 Bifunctional Stabilizers

312

3.2.4 Stabilizer Blends

312

3.3 Thermostabilizers, PVC Stabilizers

312

3.4 Light Stabilizers

313

3.4.1 UV Absorbers

313

3.4.2 Quenchers

315

3.4.3 Radical Scavengers and Hydroperoxide Decomposers

315

3.5 Bio-Stabilizers

317

3.6 Other Stabilizers

318

3.6.1 Lubricants

318

3.6.2 Other Additives

318

3.6.3 Metal Deactivators, Complexing Agents

319

3.6.4 Hydrolysis Stabilizers

319

3.7 Stabilization of Individual Polymers

319

3.7.1 Polyolefins

319

3.7.1.1 Thermal Oxidation

319

3.7.1.2 Light Protection

320

3.7.2 Styrene Polymers

321

3.7.2.1 Thermal Oxidation

321

3.7.2.2 Light Stabilization

321

3.7.3 Polycarbonate and Blends

322

3.7.3.1 Thermal Oxidation

322

3.7.3.2 Light Protection

323

3.7.3.3 Hydrolysis Stabilizers

324

3.7.4 Polymethyl Methacrylate

324

3.7.4.1 Thermal Oxidation

324

3.7.4.2 Light Protection

324

3.7.5 Polyvinyl Chloride

325

3.7.5.1 Thermal Degradation

325

3.7.5.2 Light Protection

329

3.7.6 Polyoxymethylene

330

3.7.6.1 End Group Stabilization

330

3.7.6.2 Integration of Comonomers

330

3.7.6.3 Stabilization against Thermal-Oxidative Degradation

331

3.7.6.4 Light Protection

331

3.7.7 Thermoplastic Polyester

332

3.7.7.1 Thermal Degradation during Processing

332

3.7.7.2 Thermal Oxidation

332

3.7.7.3 Thermal Oxidation of Polyethylene Terephthalate

332

3.7.7.4 Light Protection

333

3.7.7.5 Hydrolysis

333

3.7.8 Polyamides

333

3.7.8.1 Thermal Oxidation

333

3.7.8.2 Light Protection

337

3.7.8.3 Semi-Aromatic and Aromatic Polyamides

338

3.7.9 Cellulose and its Derivatives

338

3.7.9.1 Thermal Loading and Oxidation

338

3.7.9.2 Light Protection

339

3.7.10 Polyurethanes

339

3.7.10.1 Thermal Oxidation

339

3.7.10.2 Light Protection

339

3.7.10.3 Hydrolysis

340

3.7.11 Thermoplastic Polyurethanes

340

3.7.12 Tetrafluoroethylene-Ethylene Copolymer

340

3.7.13 High-Temperature Thermoplastics

340

3.7.13.1 Polyarylate

341

3.7.13.2 Polyphenylene Ether and Blends

341

3.7.13.3 Polyphenylene Sulfide

341

3.7.14 Thermosets

343

3.7.14.1 Storage Stability Prior to Processing

344

3.7.14.2 Molding Materials: Curing

345

3.7.14.3 Molding Materials: Structural Aspects

346

3.7.14.4 Design Aspects

350

3.7.15 Elastomers

351

3.7.15.1 Thermal Oxidation

351

3.7.15.2 Light Protection

352

3.8 Stabilization of Recycled Materials

352

4 Processing

354

4.1 Processing Influencing Service Properties

357

4.1.1 Influencing Parameters

359

4.1.1.1 Processing Parameters

359

4.1.1.2 Process Steps

365

4.1.1.3 Plastics Composition

368

4.1.1.4 Influence of Metallic Contaminations

373

4.1.1.5 Influence of Catalyst Residues

373

4.1.1.6 Influence of the Atmosphere

373

4.1.2 Processing Thermoplastics

374

4.1.2.1 Manufacturing Molding Compounds

374

4.1.2.2 Extrusion

377

4.1.2.3 Injection Molding

384

4.1.2.4 Forming Processes

386

4.1.2.5 Cast Molding

386

4.2 Recycling

387

4.3 Behavior of Individual Polymers

389

4.3.1 Polyolefins

389

4.3.1.1 Influence of Manufacturing Processes and Catalysts

389

4.3.1.2 Polyethylene

391

4.3.1.3 Polypropylene

393

4.3.2 Styrene Copolymers

397

4.3.2.1 Polystyrene

397

4.3.2.2 ABS

399

4.3.3 Polycarbonate

401

4.3.4 Polymethyl Methacrylate

402

4.3.4.1 Thermal Stability of PMMA

402

4.3.5 Polyvinyl Chloride

403

4.3.6 Polyoxymethylene

405

4.3.7 Thermoplastic Polyester

407

4.3.7.1 Polybutylene Terephthalate

407

4.3.7.2 Polyethylene Terephthalate

407

4.3.8 Polyamides

409

4.3.8.1 Polyamide 6 and Polyamide 66

410

4.3.8.2 Polyamide 46

412

4.3.8.3 Polyamide 11 and 12

412

4.3.8.4 Fiber Manufacture

413

4.3.9 Fluoropolymers

413

4.3.9.1 Polytetrafluoroethylene

413

4.3.9.2 Polytrifluorochloroethylene

414

4.3.9.3 Polyvinylidene Fluoride

414

4.3.9.4 Polyvinyl Fluoride

414

4.3.10 High-Temperature Thermoplastics

414

4.3.10.1 Polyphenylene Sulfide

414

4.3.10.2 Other High-Temperature Thermoplastics

416

4.3.11 Polyurethane

416

4.3.12 Thermosets

417

4.3.12.1 Processing Thermosets

417

4.3.12.2 Curing of Thermosets

418

4.3.12.3 Influence of Fiber Reinforcement

433

4.3.12.4 Polyester Resins

444

4.3.12.5 Epoxy Resins

446

4.3.12.6 Condensation Resins

446

5 Applications

448

5.1 Material Selection Based on Service Life

460

5.2 Resistance to Atmospheric Influences

466

5.2.1 Determining Factors

466

5.2.1.1 Influence of Light: Light-Induced Degradation

466

5.2.1.2 Influence of Humidity and Moisture

470

5.2.2 Weathering Resistance in Individual Polymers

471

5.2.2.1 Polyolefins

471

5.2.2.2 Polymerized Styrenes

484

5.2.2.3 Polycarbonate and Blends

494

5.2.2.4 Polymethyl Methacrylate

504

5.2.2.5 Polyvinyl Chloride

512

5.2.2.6 Polyoxymethylene

524

5.2.2.7 Thermoplastic Polyester

528

5.2.2.8 Polyamides

531

5.2.2.9 Cellulose and Derivatives

535

5.2.2.10 Fluoropolymers

536

5.2.2.11 High-Temperature Thermoplastics

537

5.2.2.12 Thermoplastic Elastomers

541

5.2.2.13 Elastomers

544

5.2.2.14 Polyurethane

554

5.2.2.15 Thermosets

559

5.3 Resistance to Ionizing Radiation

562

5.3.1 Basic Principles

562

5.3.2 Mechanisms

567

5.3.2.1 Radiation Curing

568

5.3.2.2 Degradation

570

5.3.3 Influencing Factors

571

5.3.3.1 Influence of the Irradiation Source

571

5.3.3.2 Influence of the Dose Rate

572

5.3.3.3 Influence of Atmosphere

573

5.3.3.4 Influence of Temperature

575

5.3.3.5 Influence of Fillers

575

5.3.3.6 Influence of Stabilizers

575

5.3.4 Applying Radiation Technology to Plastics

576

5.3.4.1 Targeted Crosslinking in Plastics

576

5.3.4.2 Sterilizing Plastics

577

5.3.5 Stabilization and Sensibilization

577

5.3.5.1 Stabilization

577

5.3.5.2 Sensibilization

578

5.3.6 Resistance to Ionizing Radiation

578

5.3.7 Behavior of Individual Polymers under Ionizing Radiation

582

5.3.7.1 Polyolefins

582

5.3.7.2 Styrene Polymers

587

5.3.7.3 Polycarbonate

589

5.3.7.4 Polymethyl Methacrylate

590

5.3.7.5 Polyvinyl Chloride

591

5.3.7.6 Polyvinyl Alcohol

593

5.3.7.7 Polyoxymethylene

594

5.3.7.8 Thermoplastic Polyester

595

5.3.7.9 Polyamide

596

5.3.7.10 Cellulose and Its Derivatives

600

5.3.7.11 High-Temperature Thermoplastics

601

5.3.7.12 Thermoplastic Polyurethane

603

5.3.7.13 Elastomers

603

5.3.8 Resistance to Laser Radiation

605

5.3.9 Radiation in the Earth’s Lower Orbit

605

5.4 Thermal and Thermal-Oxidative Degradation

606

5.4.1 Continuous Operating Temperature Based on Empirical Data

606

5.4.2 Explanation of Concepts

608

5.4.2.1 Differentiating Thermal and Thermal-Oxidative Degradation

608

5.4.2.2 Annealing

610

5.4.3 Behavior of Individual Polymers

611

5.4.3.1 Polyolefins

611

5.4.3.2 Styrene Polymers

619

5.4.3.3 Polycarbonate and Blends

627

5.4.3.4 Polymethyl Methacrylate

637

5.4.3.5 Polyvinyl Chloride

640

5.4.3.6 Polyoxymethylene

641

5.4.3.7 Thermoplastic Polyester

644

5.4.3.8 Polyamide

653

5.4.3.9 Cellulose and its Derivatives

670

5.4.3.10 Fluoropolymers

671

5.4.3.11 High-Temperature Thermoplastics

673

5.4.3.12 Thermoplastic Elastomers

678

5.4.3.13 Elastomers

686

5.4.3.14 Polyurethanes

693

5.4.3.15 Thermosets

694

5.4.3.16 Siloxanes

700

5.4.4 Short-Term Peak Temperature Loads

701

5.5 Resistance to Chemical Attack

704

5.5.1 Diffusion Processes during Chemical Attack

705

5.5.1.1 Interaction and Transport Mechanisms

705

5.5.1.2 Water Absorption

707

5.5.2 Influencing Factors

708

5.5.2.1 Plastics

708

5.5.2.2 Effective Media

708

5.5.2.3 Temperature

710

5.5.2.4 Residence Time

710

5.5.2.5 Concentration

710

5.5.2.6 Material Specific Factors

710

5.5.3 Physically and Chemically Active Media

711

5.5.3.1 Physically Active Medium

712

5.5.3.2 Chemical Reactions - Chemically Active Medium

716

5.5.4 Resistance to Stress Cracking

717

5.5.5 Hydrolysis

718

5.5.6 Creep Behavior

718

5.5.6.1 Influence of Temperature

720

5.5.6.2 Influence of Ambient Conditions

721

5.5.6.3 Influence of the Medium

721

5.5.6.4 Influence of the Material

722

5.5.6.5 Influence of Processing

723

5.5.6.6 Influence of Stabilizers

723

5.5.7 Ways of Improving Chemical Resistance

726

5.5.8 Resistance of Reinforcing Fibers

727

5.5.8.1 Glass Fibers

727

5.5.8.2 Carbon Fibers

732

5.5.8.3 Aramid Fibers

733

5.5.8.4 Chemical Resistance of Glass Fiber Reinforced Plastics

734

5.5.9 Behavior of Individual Polymers

739

5.5.9.1 Polyolefins

739

5.5.9.2 Styrene Polymers

752

5.5.9.3 Polycarbonate and Blends

761

5.5.9.4 Polymethyl Methacrylate

768

5.5.9.5 Polyvinyl Chloride

769

5.5.9.6 Polyoxymethylene

773

5.5.9.7 Thermoplastic Polyester

778

5.5.9.8 Polyamides

783

5.5.9.9 Cellulose and its Derivatives

804

5.5.9.10 Fluoropolymers

805

5.5.9.11 High-Temperature Thermoplastics

807

5.5.9.12 Thermoplastic Elastomers

818

5.5.9.13 Elastomers

823

5.5.9.14 Polyurethane

835

5.5.9.15 Thermosets

839

5.6 Biological Resistance and Biodegradability

858

5.6.1 Main Principles

858

5.6.1.1 Micro- and Macrobiological Damage, Biological Degradation

858

5.6.1.2 Influencing Factors

866

5.6.1.3 Protecting Plastics Against Attack by Microorganisms

871

5.6.2 Biodegradable Plastics

871

5.6.2.1 Degradable Petroleum-Based Biopolymers

873

5.6.2.2 Degradable Bio-Based Biopolymers

874

5.6.2.3 Non-Degradable Bio-Based Biopolymers

874

5.6.2.4 Blends and Copolymers from Various Groups of Raw and Manufactured Materials

874

5.6.2.5 Biodegradability and Compostability

875

5.6.2.6 Oxo-Degradability

876

5.6.3 Biocompatibility and Biomedical Applications

877

5.6.3.1 Use of Biodegradable Plastics in Medical Technology

881

5.6.3.2 Sterilization

881

5.6.3.3 Catalysts in Biological Media

884

5.6.4 Resistance of Individual Polymers to Biological Media

886

5.6.4.1 Polyethylene

886

5.6.4.2 Polypropylene

889

5.6.4.3 Styrene Polymers

891

5.6.4.4 Polyoxymethylene

891

5.6.4.5 Polyvinyl Chloride

891

5.6.4.6 Vinyl Chloride-Vinyl Acetate Copolymers

896

5.6.4.7 Polymethyl Methacrylate

896

5.6.4.8 Polyvinyl Alcohol

896

5.6.4.9 Polycarbonate

896

5.6.4.10 Cellulose and its Derivatives

896

5.6.4.11 Polyamide

898

5.6.4.12 Polyester

898

5.6.4.13 Polyurethanes and Thermoplastic Polyurethanes

906

5.6.4.14 Polyurethane Urea

907

5.6.4.15 Fluoropolymers

907

5.6.4.16 Polyether Ether Ketone

908

5.6.4.17 Polysiloxane

908

5.6.4.18 Elastomers

908

5.6.4.19 Thermosets

909

6 Mechanical Behavior of Fiber Reinforced Plastics

910

6.1 Long-Term Mechanical Behavior of Fiber Reinforced Plastics

911

6.1.1 Creep

911

6.2 Creep Strength

913

6.2.1 Description

913

6.2.2 Unidirectional Fiber Composite Profiles

915

6.2.3 Laminates

918

6.2.4 Miner’s Rule

920

6.3 Cyclic Load

923

6.4 Concept of Creep and Fatigue Life Prediction for Polymer Composites

924

6.4.1 Master Curve of CSR Strength

926

6.4.2 Master Curve of Creep Strength

927

6.4.3 Master Curve of Fatigue Strength for Zero Stress Ratio

928

6.4.4 Prediction of Fatigue Strength for Arbitrary Frequency, Stress Ratio, and Temperature

931

6.4.5 Tensile and Flexural Static Strength

933

6.4.6 Creep Strength

934

6.4.7 Fatigue Strength for Zero Stress Ratio

935

6.4.8 Fatigue Strength for Arbitrary Stress Ratio

938

Plastics, Rubbers and Their Acronyms

940

Other Abbreviations

944

A Tables of Chemical Resistance

948

A.1 Polyolefins

948

A.1.1 Resistance Factors of Polyolefin Pipes

948

A.1.2 Tables of Chemical Resistance for Polyolefins

953

A.1.3 List of Exposure Media (as Established by the German Institute for Civil Engineering, DIBt)

1029

A.1.3.1 Preliminary Remarks

1029

A.1.3.2 List of Exposure Media for Polyolefins

1030

A.2 Styrene Polymers

1043

A.2.1 Chemical Resistance of Styrene Polymers

1043

A.2.2 Media Causing Stress Cracking in Styrene Polymers

1069

A.3 Polycarbonate and Polymethyl Methacrylate

1070

A.3.1 Chemical Resistance of Polycarbonate

1070

A.3.2 Polymethyl Methacrylate

1081

A.3.2.1 Chemical Resistance

1081

A.3.2.2 Stress Cracking Resistance

1093

A.4 Thermoplastic Polyester

1094

A.5 Polyoxymethylene

1108

A.6 Polyamides

1122

A.6.1 Chemical Resistance for PA 6 and PA 66

1122

A.6.2 Chemical Resistance of Polyamide 46, 610, and 612

1141

A.6.3 Chemical Resistance for Other Polyamides

1144

A.7 Cellulose and Derivates

1158

A.8 Polyvinyl Chloride

1160

A.8.1 Resistance Factors for PVC Pipes

1160

A.8.2 Chemical Resistance of PVC

1163

A.8.3 List of Exposure Media for PVC Provided by the German Institute for Construction Technology

1213

A.9 Polyphenylene Sulfide (PPS)

1219

A.10 Polyetherimide (PEI)

1223

A.11 Polyimide (PI), Polyamide Imide (PAI), Polyphenylene Ether (PPE), Polyether Ether Ketone (PEEK)

1225

A.12 Polyethersulfone (PES) and Polysulfone (PSF)

1231

A.13 Fluoropolymers

1238

A.13.1 Chemical Resistance of Fluoropolymers

1238

A.13.2 Chemical Resistance of PTFE

1246

A.13.3 Chemical Resistance of PVDF

1252

A.13.4 List of Exposure Media for PVDF (Provided by DIBt)

1273

A.14 Liquid Crystalline Polymers (LCP)

1280

A.15 Polyurethanes

1287

A.15.1 Polyurethanes

1287

A.15.2 Thermoplastic Polyurethanes (TPU)

1293

A.15.2.1 Swelling Behavior of TPU in Various Solvents

1293

A.15.2.2 Chemical Resistance of TPU

1294

A.16 Elastomers

1297

A.16.1 Chemical Resistance of Materials for Tubes and Hoses

1297

A.16.2 Chemical Resistance of Elastomers

1308

A.17 Thermosets

1331

A.17.1 Chemical Resistance of Thermosets

1331

A.17.2 List of Exposure Media for Chemical Barrier Layers Provided by the DIBt

1344

A.17.2.1 Preliminary Remarks Regarding Immersion Media in Lists 40-2.1.1 to 40-2.1.3

1344

A.17.2.2 List of Exposure Media 40-20.1.1

1345

A.17.2.3 List of Exposure Media 40-20.1.2

1349

A.17.2.4 List of Exposure Media 40-20.1.3

1352

A.17.2.5 Lists of Exposure Media 40-3.2 and 40-3.4: Glass Fiber Reinforced Laminates with Thermoplastic Coating of PP and PVC-U

1360

A.18 Chemical Resistance in CAMPUS

1366

Bibliography

1368

Index

1448

 

© 2009-2024 ciando GmbH