Materials Science of Polymers for Engineers

Tim A. Osswald, Georg Menges

Materials Science of Polymers for Engineers

2012

688 Seiten

Format: PDF, Online Lesen

E-Book: €  79,99

E-Book kaufen

E-Book kaufen

ISBN: 9781569905241

 

Preface to the First Edition

8

Preface to the Third Edition

10

1 Introduction

24

1.1 The 6 P’s

24

1.2 General Information

27

1.3 Identification of Polymers

34

1.4 Sustainability – The 6th P

36

References

41

2 Historical Background

42

2.1 From Natural to Synthetic Rubber

42

2.2 Cellulose and the $10,000 Idea

48

2.3 Galalith – The Milk Stone

51

2.4 Leo Baekeland and the Plastics Industry

52

2.5 Herman Mark and the American Polymer Education

55

2.6 Wallace Hume Carothers and Synthetic Polymers

58

2.7 Polyethylene – A Product of Brain and Brawn

60

2.8 The Super Fiber and the Woman Who Invented It

63

2.9 One Last Word – Plastics

65

References

68

3 Structure of Polymers

70

3.1 Macromolecular Structure of Polymers

70

3.2 Molecular Bonds and Inter-Molecular Attraction

71

3.3 Molecular Weight

72

3.4 Conformation and Configuration of Polymer Molecules

77

3.5 Arrangement of Polymer Molecules

80

3.5.1 Thermoplastic Polymers

81

3.5.2 Amorphous Thermoplastics

81

3.5.3 Semi-Crystalline Thermoplastics

83

3.5.4 Thermosets and Cross-Linked Elastomers

93

3.6 Copolymers and Polymer Blends

94

3.7 Polymer Additives

96

3.7.1 Flame Retardants

96

3.7.2 Stabilizers

98

3.7.3 Antistatic Agents

99

3.7.4 Fillers

99

3.7.5 Blowing Agents

100

References

103

4 Thermal Properties of Polymers

104

4.1 Material Properties

106

4.1.1 Thermal Conductivity

106

4.1.2 Specific Heat

112

4.1.3 Density

114

4.1.4 Thermal Diffusivity

117

4.1.5 Linear Coefficient of Thermal Expansion

118

4.1.6 Thermal Penetration

119

4.1.7 Glass Transition Temperature

120

4.1.8 Melting Temperature

120

4.2 Measuring Thermal Data

120

4.2.1 Differential Thermal Analysis (DTA)

121

4.2.2 Differential Scanning Calorimeter (DSC)

122

4.2.3 Thermomechanical Analysis (TMA)

124

4.2.4 Thermogravimetry (TGA)

125

4.2.5 Density Measurements

126

References

130

5 Rheology of Polymer Melts

132

5.1 Introduction

132

5.1.1 Continuum Mechanics

132

5.1.2 The Generalized Newtonian Fluid

134

5.1.3 Normal Stresses in Shear Flow

136

5.1.4 Deborah Number

137

5.2 Viscous Flow Models

140

5.2.1 The Power Law Model

140

5.2.2 The Bird-Carreau-Yasuda Model

142

5.2.3 The Bingham Fluid

143

5.2.4 Elongational Viscosity

143

5.2.5 Rheology of Curing Thermosets

146

5.2.6 Suspension Rheology

148

5.3 Simplified Flow Models Common in Polymer Processing

150

5.3.1 Simple Shear Flow

150

5.3.2 Pressure Flow Through a Slit

151

5.3.3 Pressure Flow through a Tube – Hagen-Poiseuille Flow

151

5.3.4 Couette Flow

152

5.4 Viscoelastic Flow Models

153

5.4.1 Differential Viscoelastic Models

153

5.4.2 Integral Viscoelastic Models

156

5.5 Rheometry

159

5.5.1 The Melt Flow Indexer

160

5.5.2 The Capillary Viscometer

160

5.5.3 Computing Viscosity Using the Bagley and Weissenberg-Rabinowitsch Equations

162

5.5.4 Viscosity Approximation Using the Representative Viscosity Method

163

5.5.5 The Cone-Plate Rheometer

164

5.5.6 The Couette Rheometer

165

5.5.7 Extensional Rheometry

166

5.6 Surface Tension

169

References

178

6 Introduction to Processing

184

6.1 Extrusion

184

6.1.1 The Plasticating Extruder

187

6.1.1.1 The Solids Conveying Zone

189

6.1.1.2 The Melting Zone

192

6.1.1.3 The Metering Zone

195

6.1.2 Extrusion Dies

196

6.1.2.1 Sheeting Dies

197

6.1.2.2 Tubular Dies

198

6.2 Mixing Processes

200

6.2.1 Distributive Mixing

202

6.2.1.1 Effect of Orientation

203

6.2.2 Dispersive Mixing

205

6.2.2.1 Break-Up of Particulate Agglomerates

205

6.2.2.2 Break-Up of Fluid Droplets

207

6.2.3 Mixing Devices

210

6.2.3.1 Static Mixers

211

6.2.3.2 Banbury Mixer

211

6.2.3.3 Mixing in Single Screw Extruders

213

6.2.3.4 Co-Kneader

215

6.2.3.5 Twin Screw Extruders

216

6.2.4 Energy Consumption During Mixing

219

6.2.5 Mixing Quality and Efficiency

220

6.2.6 Plasticization

222

6.3 Injection Molding

227

6.3.1 The Injection Molding Cycle

228

6.3.2 The Injection Molding Machine

231

6.3.2.1 The Plasticating and Injection Unit

231

6.3.2.2 The Clamping Unit

232

6.3.2.3 The Mold Cavity

234

6.4 Special Injection Molding Processes

237

6.4.1 Multi-Component Injection Molding

237

6.4.2 Co-Injection Molding

239

6.4.3 Gas-Assisted Injection Molding (GAIM)

240

6.4.4 Injection-Compression Molding

242

6.4.5 Reaction Injection Molding (RIM)

243

6.4.6 Liquid Silicone Rubber Injection Molding

246

6.5 Secondary Shaping

247

6.5.1 Fiber Spinning

247

6.5.2 Film Production

248

6.5.2.1 Cast Film Extrusion

248

6.5.2.2 Film Blowing

249

6.5.3 Blow Molding

251

6.5.3.1 Extrusion Blow Molding

251

6.5.3.2 Injection Blow Molding

253

6.5.3.3 Thermoforming

254

6.6 Calendering

256

6.7 Coating

259

6.8 Compression Molding

261

6.9 Foaming

263

6.10 Rotational Molding

265

6.11 Computer Simulation in Polymer Processing

266

6.11.1 Mold Filling Simulation

267

6.11.2 Orientation Predictions

269

6.11.3 Shrinkage and Warpage Predictions

270

References

281

7 Anisotropy Development During Processing

284

7.1 Orientation in the Final Part

284

7.1.1 Processing Thermoplastic Polymers

284

7.1.2 Processing Thermoset Polymers

292

7.2 Predicting Orientation in the Final Part

296

7.2.1 Planar Orientation Distribution Function

297

7.2.2 Single Particle Motion

299

7.2.3 Jeffery’s Model

300

7.2.4 Folgar-Tucker Model

301

7.2.5 Tensor Representation of Fiber Orientation

302

7.2.5.1 Predicting Orientation in Complex Parts Using Computer Simulation

303

7.3 Fiber Damage

308

References

314

8 Solidification of Polymers

316

8.1 Solidification of Thermoplastics

316

8.1.1 Thermodynamics During Cooling

316

8.1.2 Morphological Structure

320

8.1.3 Crystallization

321

8.1.4 Heat Transfer During Solidification

324

8.2 Solidification of Thermosets

328

8.2.1 Curing Reaction

329

8.2.2 Cure Kinetics

330

8.2.3 Heat Transfer During Cure

335

8.3 Residual Stresses and Warpage of Polymeric Parts

337

8.3.1 Residual Stress Models

340

8.3.1.1 Residual Stress Model Without Phase Change Effects

342

8.3.1.2 Model to Predict Residual Stresses with Phase Change Effects

343

8.3.2 Other Simple Models to Predict Residual Stresses and Warpage

345

8.3.2.1 Uneven Mold Temperature

347

8.3.2.2 Residual Stress in a Thin Thermoset Part

348

8.3.2.3 Anisotropy Induced Curvature Change

349

8.3.3 Predicting Warpage in Actual Parts

350

References

357

9 Mechanical Behavior of Polymers

362

9.1 Basic Concepts of Stress and Strain

362

9.1.1 Plane Stress

363

9.1.2 Plane Strain

364

9.2 Viscoelastic Behavior of Polymers

364

9.2.1 Stress Relaxation Test

365

9.2.2 Time-Temperature Superposition (WLF-Equation)

367

9.2.3 The Boltzmann Superposition Principle

368

9.3 Applying Linear Viscoelasticity to Describe the Behavior of Polymers

369

9.3.1 The Maxwell Model

370

9.3.2 Kelvin Model

371

9.3.3 Jeffrey Model

373

9.3.4 Standard Linear Solid Model

375

9.3.5 The Generalized Maxwell Model

377

9.4 The Short-Term Tensile Test

382

9.4.1 Rubber Elasticity

383

9.4.2 The Tensile Test and Thermoplastic Polymers

388

9.5 Creep Test

395

9.5.1 Isochronous and Isometric Creep Plots

399

9.6 Dynamic Mechanical Tests

400

9.6.1 Torsion Pendulum

400

9.6.2 Sinusoidal Oscillatory Test

404

9.7 Effects of Structure and Composition on Mechanical Properties

406

9.7.1 Amorphous Thermoplastics

406

9.7.2 Semi-Crystalline Thermoplastics

409

9.7.3 Oriented Thermoplastics

411

9.7.4 Crosslinked Polymers

416

9.8 Mechanical Behavior of Filled and Reinforced Polymers

418

9.8.1 Anisotropic Strain-Stress Relation

420

9.8.2 Aligned Fiber Reinforced Composite Laminates

421

9.8.3 Transformation of Fiber Reinforced Composite Laminate Properties

423

9.8.4 Reinforced Composite Laminates with a Fiber Orientation Distribution Function

425

9.9 Strength Stability Under Heat

426

References

442

10 Failure and Damage of Polymers

444

10.1 Fracture Mechanics

444

10.1.1 Fracture Predictions Based on the Stress Intensity Factor

445

10.1.2 Fracture Predictions Based on an Energy Balance

447

10.1.3 Linear Viscoelastic Fracture Predictions Based on J-Integrals

449

10.2 Short-Term Tensile Strength

451

10.2.1 Brittle Failure

451

10.2.2 Ductile Failure

455

10.2.3 Failure of Highly Filled Systems or Composites

458

10.3 Impact Strength

461

10.3.1 Impact Test Methods

467

10.3.2 Fracture Mechanics Analysis of Impact Failure

471

10.4 Creep Rupture

476

10.4.1 Creep Rupture Tests

477

10.4.2 Fracture Mechanics Analysis of Creep Rupture

480

10.5 Fatigue

480

10.5.1 Fatigue Test Methods

481

10.5.2 Fracture Mechanics Analysis of Fatigue Failure

489

10.6 Friction and Wear

491

10.7 Stability of Polymer Structures

494

10.8 Environmental Effects on Polymer Failure

496

10.8.1 Weathering

496

10.8.2 Chemical Degradation

501

10.8.3 Thermal Degradation of Polymers

503

References

507

11 Electrical Properties of Polymers

510

11.1 Dielectric Behavior

510

11.1.1 Dielectric Coefficient

510

11.1.2 Mechanisms of Dielectrical Polarization

514

11.1.3 Dielectric Dissipation Factor

517

11.1.4 Implications of Electrical and Thermal Loss in a Dielectric

520

11.2 Electric Conductivity

521

11.2.1 Electric Resistance

521

11.2.2 Physical Causes of Volume Conductivity

522

11.3 Application Problems

525

11.3.1 Electric Breakdown

525

11.3.2 Electrostatic Charge

529

11.3.3 Electrets

530

11.3.4 Electromagnetic Interference Shielding (EMI Shielding)

530

11.4 Magnetic Properties

531

11.4.1 Magnetizability

531

11.4.2 Magnetic Resonance

531

References

532

12 Optical Properties of Polymers

534

12.1 Index of Refraction

534

12.2 Photoelasticity and Birefringence

537

12.3 Transparency, Reflection, Absorption, and Transmittance

541

12.4 Gloss

547

12.5 Color

548

12.6 Infrared Spectroscopy

552

12.7 Infrared Pyrometry

553

12.8 Heating with Infrared Radiation

555

References

557

13 Permeability Properties of Polymers

558

13.1 Sorption

558

13.2 Diffusion and Permeation

560

13.3 Measuring S, D, and P

565

13.4 Corrosion of Polymers and Cracking [5]

566

13.5 Diffusion of Polymer Molecules and Self-diffusion

569

References

569

14 Acoustic Properties of Polymers

570

14.1 Speed of Sound

570

14.2 Sound Reflection

572

14.3 Sound Absorption

573

References

574

Appendix

576

Appendix I

577

Appendix II

585

Appendix III

586

Appendix IV – Balance Equations

605

Continuity Equation

605

Energy Equation for a Newtonian Fluid

605

Momentum Balance

606

Momentum Equation in Terms of t

606

Navier-Stokes Equation

606

Index

608

 

© 2009-2024 ciando GmbH