Big Data in der Praxis - Beispiellösungen mit Hadoop und NoSQL. Daten speichern, aufbereiten, visualisieren

Jonas Freiknecht

Big Data in der Praxis

Big Data in der Praxis - Beispiellösungen mit Hadoop und NoSQL. Daten speichern, aufbereiten, visualisieren

2014

448 Seiten

Format: PDF

E-Book: €  39,99

E-Book kaufen

E-Book kaufen

ISBN: 9783446441774

 

BIG DATA IN DER PRAXIS //
- Für Analysten, BI-Verantwortliche, Data-Scientists, Consultants
- Auf der DVD finden Sie:
18 fertige Projekte, die im Buch Schritt für Schritt entwickelt werden; Videotutorials u.a. zur Installation von Hadoop, Hive, HBase (Gesamtdauer: 80 Min.); Testdatensätze für die Wissensdatenbank
Dieses Buch bringt Ihnen das Thema Big Data auf sehr praktische Art und Weise nahe. Sie lernen Technologien, Tools und Methoden kennen, entwickeln Beispiel-Lösungen und bekommen aufgezeigt, wie Sie bestehende Systeme vorausschauend auf die mit dem Big Data-Trend einhergehenden Herausforderungen vorbereiten.
Dazu werden Sie neben den bekannten Apache-Projekten wie Hadoop, Hive und HBase auch einige weniger bekannte Frameworks wie Apache UIMA oder Apache OpenNLP kennenlernen, um gezielt die Verarbeitung unstrukturierter Daten zu behandeln. Alle hier verwendeten Software-Komponenten stehen im vollen Umfang kostenlos im Internet zur Verfügung.
Gemeinsam mit dem Autor werden Sie ganz konkret Schritt für Schritt viele kleinere Projekte aufbauen bis hin zu einer fertigen und funktionstüchtigen Implementierung.
Ziel des Buches ist es, Sie auf den Effekt und den Mehrwert der neuen Möglichkeiten aufmerksam zu machen, sodass Sie diese konstruktiv in Ihr Unternehmen tragen können und für sich und Ihre Kollegen somit ein Bewusstsein für den Wert Ihrer Daten schaffen.
AUS DEM INHALT //
Einführung rund um Big Data // Hadoop installieren, konfigurieren & bedienen // HDFS, Map-Reduce & YARN: Daten speichern und verarbeiten // Hadoop-Ecosystem: Überblick über dessen Komponenten // Einführung in NoSQL // HBase installieren, einrichten & auf Daten zugreifen // Data-Warehousing mit Apache Hive // HiveQL als Abfragesprache, Hive Security, Hive & JDBC // Datenimport aus relationalen Datenbanken mit Sqoop // Big Data-Visualisierung: Diagrammarten, Tipps & Trends // Visualisierungs-Frameworks im Vergleich // D3.js: Entwicklung einiger Beispieldiagramme // Entwicklung einer abschließenden Big Data-Analyse-Lösung // Troubleshooting für die Arbeit mit Hadoop, Hive & HBase

Jonas Freiknecht, Information Architect für Big Data bei IBM Deutschland, hat tagtäglich mit den Herausforderungen bei der Verarbeitung, Aufbereitung und Darstellung großer Datenmengen zu tun. Nebenbei promoviert er an der Universität Mannheim zum Thema Visualisierung und Simulation.

 

© 2009-2018 ciando GmbH